Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

The annotation and conditions in this rule are derived from the following entries: P0A910 (OMPA_ECOLI)

If a protein meets these conditions... i

Common conditions

Special conditions

    • Subsequence at position 311 - 323 aligns to "C-x*-C" in entry P0A910
    • Subsequence at position 159 - 159 aligns to "R" in entry P0A910 (individually applies "Part of salt bridge gating mechanism")
    • Subsequence at position 73 - 73 aligns to "E" in entry P0A910 (individually applies "Part of salt bridge gating mechanism")
    • Subsequence at position 311 - 323 aligns to "C-x*-C" in entry P0A910
    • Predicted signal

... then these annotations are applied i

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namei

  • Recommended name:
    Outer membrane protein A
    Alternative name(s):
    Outer membrane porin A

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namei

  • Name:ompA

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> describes the function(s) of a protein.<p><a href='/help/function' target='_top'>More...</a></p>Functioni

  • With TolR probably plays a role in maintaining the position of the peptidoglycan cell wall in the periplasm. Acts as a porin with low permeability that allows slow penetration of small solutes; an internal gate slows down solute passage.
  • Required for conjugation with F-type plasmids; probably serves as the mating receptor on recipient cells.

<p>This subsection of the ‘Family and domains’ section provides general information on the biological role of a domain. The term ‘domain’ is intended here in its wide acceptation, it may be a structural domain, a transmembrane region or a functional domain. Several domains are described in this subsection.<p><a href='/help/domain_cc' target='_top'>More...</a></p>Domaini

  • The extracellular loops are most variable in sequence, and in some bacteria confer sensitivity to phage and/or colicins.

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

  • Monomer and homodimer.

<p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

<p>This subsection of the ‘PTM / Processing’ section denotes the presence of an N-terminal signal peptide.<p><a href='/help/signal' target='_top'>More...</a></p>Signal peptidei

  • (to residues corresponding to positions @NTER@i - @TO@i)

<p>This subsection of the PTM / Processing":/help/ptm_processing_section section describes the positions of cysteine residues participating in disulfide bonds.<p><a href='/help/disulfid' target='_top'>More...</a></p>Disulfide bondi

  • (to residues corresponding to positions 311 - 323)

<p>This subsection describes interesting single amino acid sites on the sequence that are not defined in any other subsection. This subsection can be displayed in different sections (‘Function’, ‘PTM / Processing’, ‘Pathology and Biotech’) according to its content.<p><a href='/help/site' target='_top'>More...</a></p>Sitei

  • Part of salt bridge gating mechanism (to residues corresponding to position 159)
  • Part of salt bridge gating mechanism (to residues corresponding to position 73)

<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>Chaini

  • @CHAIN_NAME@i (to residues corresponding to positions @TO|+1@i - @CTER@i)

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO (Gene Ontology) termsi

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again