Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

The annotation and conditions in this rule are derived from the following entries: Q69028 (DPOL_HBVCJ)

If a protein meets these conditions... i

Common conditions

Special conditions

    • Subsequence at position 1 - 177 aligns to entry Q69028 (individually applies "Terminal protein domain (TP)")
    • Subsequence at position 63 - 63 aligns to "Y" in entry Q69028 (individually applies "Priming of reverse-transcription by covalently linking the first nucleotide of the (-)DNA")
    • Subsequence at position 347 - 690 aligns to entry Q69028 (individually applies "Polymerase/reverse transcriptase domain (RT)")
    • Subsequence at position 552 - 552 aligns to "D" in entry Q69028 (individually applies "Magnesium; catalytic")
    • Subsequence at position 429 - 429 aligns to "D" in entry Q69028 (individually applies "Magnesium; catalytic")
    • Subsequence at position 551 - 551 aligns to "D" in entry Q69028 (individually applies "Magnesium; catalytic")
    • Subsequence at position 178 - 346 aligns to entry Q69028 (individually applies "Spacer")

... then these annotations are applied i

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namei

  • Recommended name:
    Protein P

Cleaved chain(s) or included domain(s)i

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namei

  • Name:P

<p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

<p>This subsection of the ‘Function’ section describes relevant information that doesn’t fall into the scope of any other subsections, but is thought to be valuable enough to be cited in UniProtKB.<p><a href='/help/miscellaneous' target='_top'>More...</a></p>Miscellaneousi

  • Hepadnaviral virions contain probably just one P protein molecule per particle.

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes the catalytic activity of an enzyme, i.e. a chemical reaction that the enzyme catalyzes.<p><a href='/help/catalytic_activity' target='_top'>More...</a></p>Catalytic activityi

<p>This subsection of the ‘Family and domains’ section provides general information on the biological role of a domain. The term ‘domain’ is intended here in its wide acceptation, it may be a structural domain, a transmembrane region or a functional domain. Several domains are described in this subsection.<p><a href='/help/domain_cc' target='_top'>More...</a></p>Domaini

  • Terminal protein domain (TP) is hepadnavirus-specific. Spacer domain is highly variable and separates the TP and RT domains. Polymerase/reverse-transcriptase domain (RT) and ribonuclease H domain (RH) are similar to retrovirus reverse transcriptase/RNase H.
  • The polymerase/reverse transcriptase (RT) and ribonuclease H (RH) domains are structured in five subdomains: finger, palm, thumb, connection and RNase H. Within the palm subdomain, the 'primer grip' region is thought to be involved in the positioning of the primer terminus for accommodating the incoming nucleotide. The RH domain stabilizes the association of RT with primer-template.

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> describes the function(s) of a protein.<p><a href='/help/function' target='_top'>More...</a></p>Functioni

  • Multifunctional enzyme that converts the viral RNA genome into dsDNA in viral cytoplasmic capsids. This enzyme displays a DNA polymerase activity that can copy either DNA or RNA templates, and a ribonuclease H (RNase H) activity that cleaves the RNA strand of RNA-DNA heteroduplexes in a partially processive 3'- to 5'-endonucleasic mode. Neo-synthesized pregenomic RNA (pgRNA) are encapsidated together with the P protein, and reverse-transcribed inside the nucleocapsid. Initiation of reverse-transcription occurs first by binding the epsilon loop on the pgRNA genome, and is initiated by protein priming, thereby the 5'-end of (-)DNA is covalently linked to P protein. Partial (+)DNA is synthesized from the (-)DNA template and generates the relaxed circular DNA (RC-DNA) genome. After budding and infection, the RC-DNA migrates in the nucleus, and is converted into a plasmid-like covalently closed circular DNA (cccDNA). The activity of P protein does not seem to be necessary for cccDNA generation, and is presumably released from (+)DNA by host nuclear DNA repair machinery.

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes regulatory mechanisms for enzymes, transporters or microbial transcription factors, and reports the components which regulate (by activation or inhibition) the reaction.<p><a href='/help/activity_regulation' target='_top'>More...</a></p>Activity regulationi

  • Activated by host HSP70 and HSP40 in vitro to be able to bind the epsilon loop of the pgRNA. Because deletion of the RNase H region renders the protein partly chaperone-independent, the chaperones may be needed indirectly to relieve occlusion of the RNA-binding site by this domain. Inhibited by several reverse-transcriptase inhibitors: Lamivudine, Adefovir and Entecavir.

<p>This subsection describes interesting single amino acid sites on the sequence that are not defined in any other subsection. This subsection can be displayed in different sections (‘Function’, ‘PTM / Processing’, ‘Pathology and Biotech’) according to its content.<p><a href='/help/site' target='_top'>More...</a></p>Sitei

  • Priming of reverse-transcription by covalently linking the first nucleotide of the (-)DNA (to residues corresponding to position 63)

<p>This subsection of the ‘Family and Domains’ section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni

  • Terminal protein domain (TP) (to residues corresponding to positions 1 - 177)
  • Polymerase/reverse transcriptase domain (RT) (to residues corresponding to positions 347 - 690)
  • Spacer (to residues corresponding to positions 178 - 346)

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section indicates at which position the protein binds a given metal ion. The nature of the metal is indicated in the ‘Description’ field.<p><a href='/help/metal' target='_top'>More...</a></p>Metal bindingi

  • Magnesium; catalytic (to residues corresponding to position 552)
  • Magnesium; catalytic (to residues corresponding to position 429)
  • Magnesium; catalytic (to residues corresponding to position 551)

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO (Gene Ontology) termsi

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again