Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

The annotation and conditions in this rule are derived from the following entries: P03116 (VE1_BPV1), P04014 (VE1_HPV11)

If a protein meets these conditions... i

Common conditions

Special conditions

    • Subsequence at position 514 - 514 aligns to "K" in entry P03116
    • Subsequence at position 514 - 514 aligns to "K" in entry P03116
    • Subsequence at position 84 - 86 aligns to "K-R-K" in entry P03116 (individually applies "Nuclear localization signal")
    • Subsequence at position 109 - 109 aligns to "S" in entry P03116 (individually applies "Phosphoserine; by host")
    • Subsequence at position 102 - 102 aligns to "T" in entry P03116 (individually applies "Phosphothreonine; by host")
    • Subsequence at position 142 - 308 aligns to entry P03116 (individually applies "DNA-binding region")
    • Subsequence at position 433 - 440 aligns to "G-x-x-x-x-G-K-S" in entry P03116 (individually applies "ATP")
    • Subsequence at position 89 - 89 aligns to "S" in entry P04014 (individually applies "Phosphoserine; by host")
    • Subsequence at position 107 - 107 aligns to "S" in entry P04014 (individually applies "Phosphoserine; by host")
    • Subsequence at position 106 - 115 aligns to "[LIV]-x-x-x-[LIV]-x-x-[LIV]-x-[LIV]" in entry P04014 (individually applies "Nuclear export signal")
    • Subsequence at position 93 - 93 aligns to "S" in entry P04014 (individually applies "Phosphoserine; by host")

... then these annotations are applied i

<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namei

<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: 'Name', 'Synonyms', 'Ordered locus names' and 'ORF names'.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namei

  • Name:E1

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction%5Fsection">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function%5Fsection">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

  • Can form hexamers. Interacts with E2 protein; this interaction increases E1 DNA binding specificity. Interacts with host DNA polymerase subunit POLA2. Interacts with host single stranded DNA-binding protein RPA1. Interacts with host TOP1; this interaction stimulates the enzymatic activity of TOP1.

<p>This subsection of the <a href="http://www.uniprot.org/help/function%5Fsection">Function</a> describes the function(s) of a protein.<p><a href='/help/function' target='_top'>More...</a></p>Functioni

  • ATP-dependent DNA helicase required for initiation of viral DNA replication. It forms a complex with the viral E2 protein. The E1-E2 complex binds to the replication origin which contains binding sites for both proteins. During the initial step, a dimer of E1 interacts with a dimer of protein E2 leading to a complex that binds the viral origin of replication with high specificity. Then, a second dimer of E1 displaces the E2 dimer in an ATP-dependent manner to form the E1 tetramer. Following this, two E1 monomers are added to each half of the site, which results in the formation of two E1 trimers on the viral ori. Subsequently, two hexamers will be created. The double hexamer acts as a bi-directional helicase machinery and unwinds the viral DNA and then recruits the host DNA polymerase to start replication.

<p>This subsection of the <a href="http://www.uniprot.org/help/function%5Fsection">Function</a> section describes the catalytic activity of an enzyme, i.e. a chemical reaction that the enzyme catalyzes.<p><a href='/help/catalytic_activity' target='_top'>More...</a></p>Catalytic activityi

<p>This subsection of the 'Family and domains' section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm%5Fprocessing%5Fsection">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

  • Phosphorylated.
  • Sumoylated.

<p>This subsection of the 'PTM / Processing' section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei

  • Phosphoserine; by host (to residues corresponding to position 109)
  • Phosphothreonine; by host (to residues corresponding to position 102)
  • Phosphoserine; by host (to residues corresponding to position 89)
  • Phosphoserine; by host (to residues corresponding to position 107)
  • Phosphoserine; by host (to residues corresponding to position 93)

<p>This subsection of the <a href="http://www.uniprot.org/help/function%5Fsection">Function</a> section describes a region in the protein which binds nucleotide phosphates. It always involves more than one amino acid and includes all residues involved in nucleotide-binding.<p><a href='/help/np_bind' target='_top'>More...</a></p>Nucleotide bindingi

  • ATP (to residues corresponding to positions 433 - 440)

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm%5Fprocessing%5Fsection">PTM / Processing</a> section describes <strong>covalent linkages</strong> of various types formed <strong>between two proteins (interchain cross-links)</strong> or <strong>between two parts of the same protein (intrachain cross-links)</strong>, except the disulfide bonds that are annotated in the <a href="http://www.uniprot.org/manual/disulfid">'Disulfide bond'</a> subsection.<p><a href='/help/crosslnk' target='_top'>More...</a></p>Cross-linki

  • Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in SUMO) (to residues corresponding to position 514)

<p>This subsection of the 'Family and Domains' section describes a short (usually not more than 20 amino acids) conserved sequence motif of biological significance.<p><a href='/help/motif' target='_top'>More...</a></p>Motifi

  • Nuclear localization signal (to residues corresponding to positions 84 - 86)
  • Nuclear export signal (to residues corresponding to positions 106 - 115)

<p>This subsection of the 'Family and Domains' section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni

  • DNA-binding region (to residues corresponding to positions 142 - 308)

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO (Gene Ontology) termsi

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again