Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

The annotation and conditions in this rule are derived from the following entries: P13029 (KATG_ECOLI), O59651 (KATG2_HALMA), Q939D2 (KATG_BURPS), P9WIE5 (KATG_MYCTU), Q31MN3 (KATG_SYNE7)

If a protein meets these conditions... i

Common conditions

Special conditions

    • Subsequence at position 102 - 102 aligns to "R" in entry P13029 (individually applies "Transition state stabilizer")
    • Subsequence at position 267 - 267 aligns to "H" in entry P13029 (individually applies "Iron (heme axial ligand)")
    • Subsequence at position 226 - 252 aligns to "Y-x*-M" in entry P13029 (individually applies "Tryptophyl-tyrosyl-methioninium (Tyr-Met) (with @RESIDUE_NAME_AT_POS|Trp|105|@)")
    • Subsequence at position 106 - 106 aligns to "H" in entry P13029 (individually applies "Proton acceptor")
    • Subsequence at position 105 - 226 aligns to "W-x*-Y" in entry P13029 (individually applies "Tryptophyl-tyrosyl-methioninium (Trp-Tyr) (with @RESIDUE_NAME_AT_POS|Met|252|@)")
    • Predicted signal

... then these annotations are applied i

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namei

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namei

  • Name:katG

<p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> describes the function(s) of a protein.<p><a href='/help/function' target='_top'>More...</a></p>Functioni

  • Bifunctional enzyme with both catalase and broad-spectrum peroxidase activity.

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

  • Homodimer or homotetramer.

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes the catalytic activity of an enzyme, i.e. a chemical reaction that the enzyme catalyzes.<p><a href='/help/catalytic_activity' target='_top'>More...</a></p>Catalytic activityi

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

  • Formation of the three residue Trp-Tyr-Met cross-link is important for the catalase, but not the peroxidase activity of the enzyme.

<p>This subsection of the ‘Function’ section provides information relevant to cofactors. A cofactor is any non-protein substance required for a protein to be catalytically active. Some cofactors are inorganic, such as the metal atoms zinc, iron, and copper in various oxidation states. Others, such as most vitamins, are organic.<p><a href='/help/cofactor' target='_top'>More...</a></p>Cofactori

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section describes <strong>covalent linkages</strong> of various types formed <strong>between two proteins (interchain cross-links)</strong> or <strong>between two parts of the same protein (intrachain cross-links)</strong>, except the disulfide bonds that are annotated in the <a href="http://www.uniprot.org/manual/disulfid">'Disulfide bond'</a> subsection.<p><a href='/help/crosslnk' target='_top'>More...</a></p>Cross-linki

  • Tryptophyl-tyrosyl-methioninium (Tyr-Met) (with @RESIDUE_NAME_AT_POS|Trp|105|@i) (to residues corresponding to positions 226 - 252)
  • Tryptophyl-tyrosyl-methioninium (Trp-Tyr) (with @RESIDUE_NAME_AT_POS|Met|252|@i) (to residues corresponding to positions 105 - 226)

<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>Chaini

  • @CHAIN_NAME@i (to residues corresponding to positions @TO|+1@i - @CTER@i)

<p>This subsection of the ‘PTM / Processing’ section denotes the presence of an N-terminal signal peptide.<p><a href='/help/signal' target='_top'>More...</a></p>Signal peptidei

  • (to residues corresponding to positions @NTER@i - @TO@i)

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section indicates at which position the protein binds a given metal ion. The nature of the metal is indicated in the ‘Description’ field.<p><a href='/help/metal' target='_top'>More...</a></p>Metal bindingi

  • Iron (heme axial ligand) (to residues corresponding to position 267)

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section is used for enzymes and indicates the residues directly involved in catalysis.<p><a href='/help/act_site' target='_top'>More...</a></p>Active sitei

  • Proton acceptor (to residues corresponding to position 106)

<p>This subsection describes interesting single amino acid sites on the sequence that are not defined in any other subsection. This subsection can be displayed in different sections (‘Function’, ‘PTM / Processing’, ‘Pathology and Biotech’) according to its content.<p><a href='/help/site' target='_top'>More...</a></p>Sitei

  • Transition state stabilizer (to residues corresponding to position 102)

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO (Gene Ontology) termsi

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again