Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

The annotation and conditions in this rule are derived from the following entries: P0A6H5 (HSLU_ECOLI), P43773 (HSLU_HAEIN), P39778 (CLPY_BACSU), Q9WYZ2 (HSLU_THEMA)

If a protein meets these conditions... i

Common conditions

    • Matches HAMAP signature MF_00249
    • taxon = Bacteria
    • fragment ≠ the sequence is fragmented

Special conditions

    • Subsequence at position 18 - 18 aligns to "[IV]" in entry P0A6H5 (individually applies "ATP; via amide nitrogen and carbonyl oxygen")
    • Subsequence at position 60 - 65 aligns to "G-[VIC]-G-K-T-E" in entry P0A6H5 (individually applies "ATP")
    • Subsequence at position 256 - 256 aligns to "D" in entry P0A6H5 (individually applies "ATP")
    • Subsequence at position 393 - 393 aligns to "R" in entry P0A6H5 (individually applies "ATP")
    • Subsequence at position 321 - 321 aligns to "E" in entry P0A6H5 (individually applies "ATP")

... then these annotations are applied i

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi

  • Recommended name:
    ATP-dependent protease ATPase subunit HslU
    Alternative name(s):
    Heat shock protein HslU
    Unfoldase HslU
  • Recommended name:
    ATP-dependent protease ATPase subunit HslU
    Alternative name(s):
    Unfoldase HslU

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namei

  • Name:hslU

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> describes the function(s) of a protein.<p><a href='/help/function' target='_top'>More...</a></p>Functioni

  • ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis.

<p>This subsection of the ‘Expression’ section reports the experimentally proven effects of inducers and repressors (usually chemical compounds or environmental factors) on the level of protein (or mRNA) expression (up-regulation, down-regulation, constitutive expression).<p><a href='/help/induction' target='_top'>More...</a></p>Inductioni

  • By heat shock.

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

  • A double ring-shaped homohexamer of HslV is capped on each side by a ring-shaped HslU homohexamer. The assembly of the HslU/HslV complex is dependent on binding of ATP.

<p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes the interaction between a single amino acid and another chemical entity. Priority is given to the annotation of physiological ligands.<p><a href='/help/binding' target='_top'>More...</a></p>Binding sitei

  • ATP; via amide nitrogen and carbonyl oxygen (to residues corresponding to position 18)
  • ATP (to residues corresponding to position 256)
  • ATP (to residues corresponding to position 393)
  • ATP (to residues corresponding to position 321)

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes a region in the protein which binds nucleotide phosphates. It always involves more than one amino acid and includes all residues involved in nucleotide-binding.<p><a href='/help/np_bind' target='_top'>More...</a></p>Nucleotide bindingi

  • ATP (to residues corresponding to positions 60 - 65)

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO (Gene Ontology) termsi

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again