Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 113 (02 Jun 2021)
Sequence version 1 (01 May 1999)
Previous versions | rss
Add a publicationFeedback
Protein

Nucleosome assembly protein 1-like 1

Gene

Nap1l1

Organism
Rattus norvegicus (Rat)
Status
Reviewed-Annotation score:

Annotation score:5 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the 'correct annotation' for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at protein leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the 'protein existence' evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Histone chaperone that plays a role in the nuclear import of H2A-H2B and nucleosome assembly. Participates also in several important DNA repair mechanisms: greatly enhances ERCC6-mediated chromatin remodeling which is essential for transcription-coupled nucleotide excision DNA repair. Stimulates also homologous recombination (HR) by RAD51 and RAD54 which is essential in mitotic DNA double strand break (DSB) repair (By similarity).

Plays a key role in the regulation of embryonic neurogenesis (By similarity).

Promotes the proliferation of neural progenitors and inhibits neuronal differentiation during cortical development (By similarity).

Regulates neurogenesis via the modulation of RASSF10; regulates RASSF10 expression by promoting SETD1A-mediated H3K4 methylation at the RASSF10 promoter (By similarity).

By similarity

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Biological processNeurogenesis

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Nucleosome assembly protein 1-like 1
Alternative name(s):
NAP-1-related protein
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: 'Name', 'Synonyms', 'Ordered locus names' and 'ORF names'.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:Nap1l1
Synonyms:Nrp
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiRattus norvegicus (Rat)
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the 'taxonomic identifier' or 'taxid'.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri10116 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresGliresRodentiaMyomorphaMuroideaMuridaeMurinaeRattus
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
  • UP000002494 <p>A UniProt <a href="http://www.uniprot.org/manual/proteomes%5Fmanual">proteome</a> can consist of several components.<br></br>The component name refers to the genomic component encoding a set of proteins.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Unplaced

Organism-specific databases

Rat genome database

More...
RGDi
71094, Nap1l1

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Keywords - Cellular componenti

Cytoplasm, Nucleus

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm%5Fprocessing%5Fsection">PTM / Processing</a> section indicates that the initiator methionine is cleaved from the mature protein.<p><a href='/help/init_met' target='_top'>More...</a></p>Initiator methionineiRemovedBy similarity
<p>This subsection of the 'PTM / Processing' section describes the extent of a polypeptide chain in the mature protein following processing or proteolytic cleavage.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00001856542 – 387Nucleosome assembly protein 1-like 1Add BLAST386
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm%5Fprocessing%5Fsection">PTM / Processing</a> section describes a propeptide, which is a part of a protein that is cleaved during maturation or activation. Once cleaved, a propeptide generally has no independent biological function.<p><a href='/help/propep' target='_top'>More...</a></p>PropeptideiPRO_0000396688388 – 390Removed in mature formBy similarity3

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the 'PTM / Processing' section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei2N-acetylalanineBy similarity1
Modified residuei10PhosphoserineCombined sources1
Modified residuei62PhosphothreonineCombined sources1
Modified residuei64PhosphothreonineBy similarity1
Modified residuei69PhosphoserineBy similarity1
Modified residuei116N6-acetyllysineBy similarity1
Modified residuei143PhosphoserineBy similarity1
Modified residuei3585-glutamyl polyglycineBy similarity1
Modified residuei3595-glutamyl polyglycineBy similarity1
Modified residuei387Cysteine methyl esterCurated1
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm%5Fprocessing%5Fsection">PTM / Processing</a> section specifies the position(s) and the type of covalently attached lipid group(s).<p><a href='/help/lipid' target='_top'>More...</a></p>Lipidationi387S-farnesyl cysteineBy similarity1

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm%5Fprocessing%5Fsection">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

Polyglycylated by TTLL10 on glutamate residues, resulting in polyglycine chains on the gamma-carboxyl group. Both polyglutamylation and polyglycylation modifications can coexist on the same protein on adjacent residues, and lowering polyglycylation levels increases polyglutamylation, and reciprocally.By similarity
Polyglutamylated by TTLL4 on glutamate residues, resulting in polyglutamate chains on the gamma-carboxyl group. Both polyglutamylation and polyglycylation modifications can coexist on the same protein on adjacent residues, and lowering polyglycylation levels increases polyglutamylation, and reciprocally.By similarity

Keywords - PTMi

Acetylation, Isopeptide bond, Lipoprotein, Methylation, Phosphoprotein, Prenylation

Proteomic databases

jPOST - Japan Proteome Standard Repository/Database

More...
jPOSTi
Q9Z2G8

PaxDb, a database of protein abundance averages across all three domains of life

More...
PaxDbi
Q9Z2G8

PeptideAtlas

More...
PeptideAtlasi
Q9Z2G8

PRoteomics IDEntifications database

More...
PRIDEi
Q9Z2G8

PTM databases

iPTMnet integrated resource for PTMs in systems biology context

More...
iPTMneti
Q9Z2G8

Comprehensive resource for the study of protein post-translational modifications (PTMs) in human, mouse and rat.

More...
PhosphoSitePlusi
Q9Z2G8

SwissPalm database of S-palmitoylation events

More...
SwissPalmi
Q9Z2G8

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction%5Fsection">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function%5Fsection">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

Homodimer. The dimer binds strongly and sequentially to single and double H2A-H2B heterodimers.

Interacts with ERCC6; this interaction increases ERCC6 processivity.

Interacts with RAD54 (By similarity).

Interacts with SETD1A (By similarity).

By similarity

GO - Molecular functioni

Protein-protein interaction databases

The Biological General Repository for Interaction Datasets (BioGRID)

More...
BioGRIDi
250147, 3 interactors

Protein interaction database and analysis system

More...
IntActi
Q9Z2G8, 1 interactor

STRING: functional protein association networks

More...
STRINGi
10116.ENSRNOP00000005286

<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Region

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the 'Family and Domains' section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni1 – 32DisorderedSequence analysisAdd BLAST32
Regioni133 – 163DisorderedSequence analysisAdd BLAST31
Regioni345 – 390DisorderedSequence analysisAdd BLAST46

Motif

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the 'Family and Domains' section describes a short (usually not more than 20 amino acids) conserved sequence motif of biological significance.<p><a href='/help/motif' target='_top'>More...</a></p>Motifi272 – 278Nuclear localization signalSequence analysis7

Compositional bias

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the 'Family and Domains' section describes the position of regions of compositional bias within the protein and the particular type of amino acids that are over-represented within those regions.<p><a href='/help/compbias' target='_top'>More...</a></p>Compositional biasi10 – 27Acidic residuesSequence analysisAdd BLAST18
Compositional biasi142 – 163Basic and acidic residuesSequence analysisAdd BLAST22
Compositional biasi345 – 374Acidic residuesSequence analysisAdd BLAST30
Compositional biasi375 – 390Basic and acidic residuesSequence analysisAdd BLAST16

<p>This subsection of the 'Family and domains' section provides general information on the biological role of a domain. The term 'domain' is intended here in its wide acceptation, it may be a structural domain, a transmembrane region or a functional domain. Several domains are described in this subsection.<p><a href='/help/domain_cc' target='_top'>More...</a></p>Domaini

The acidic domains are probably involved in the interaction with histones.

<p>This subsection of the 'Family and domains' section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Phylogenomic databases

evolutionary genealogy of genes: Non-supervised Orthologous Groups

More...
eggNOGi
KOG1507, Eukaryota

InParanoid: Eukaryotic Ortholog Groups

More...
InParanoidi
Q9Z2G8

Database for complete collections of gene phylogenies

More...
PhylomeDBi
Q9Z2G8

Family and domain databases

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR037231, NAP-like_sf
IPR002164, NAP_family

The PANTHER Classification System

More...
PANTHERi
PTHR11875, PTHR11875, 1 hit

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF00956, NAP, 1 hit

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF143113, SSF143113, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence%5Flength">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequence (1+)i

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences%5Fsection">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical%5Fand%5Fisoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences%5Fsection">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical%5Fand%5Fisoforms">canonical sequence</a> displayed by default in the entry is in its mature form or if it represents the precursor.<p><a href='/help/sequence_processing' target='_top'>More...</a></p>Sequence processingi: The displayed sequence is further processed into a mature form.

This entry has 1 described isoform and 1 potential isoform that is computationally mapped.Show allAlign All

Q9Z2G8-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MADIDNKEQS ELDQDLEDVE EVEEEETGEE TKIKARQLTV QMMQNPQILA
60 70 80 90 100
ALQERLDGLV DTPTGYIESL PKVVKRRVNA LKNLQVKCAQ IEAKFYEEVH
110 120 130 140 150
DLERKYAVLY QPLFDKRFEI INAIYEPTEE ECEWKPDEED EVSEELKEKA
160 170 180 190 200
KIEDEKKDEE KEDPKGIPEF WLTVFKNDLL SDMVQEHDEP ILKHLKDIKV
210 220 230 240 250
KFSDAGQPMS FILEFHFEPN EYFTNEVLTK TYRMRSEPDD SDPFSFDGPE
260 270 280 290 300
IMGCTGCQID WKKGKNVTLK TIKKKQKHKG RGTVRTVTKT VSKTSFFNFF
310 320 330 340 350
APPEVPENGD LDDDXEAILA ADFEIGHFLR ERIIPRSVLY FTGEAIEDDD
360 370 380 390
DDYDEEGEEA DEEGEEEGDE ENDPDYDPKK DQNPAECKQQ
Length:390
Mass (Da):45,314
Last modified:May 1, 1999 - v1
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:i3D59D3C2AE1A71EB
GO

<p>In eukaryotic reference proteomes, unreviewed entries that are likely to belong to the same gene are computationally mapped, based on gene identifiers from Ensembl, EnsemblGenomes and model organism databases.<p><a href='/help/gene_centric_isoform_mapping' target='_top'>More...</a></p>Computationally mapped potential isoform sequencesi

There is 1 potential isoform mapped to this entry.BLASTAlignShow allAdd to basket
EntryEntry nameProtein names
Gene namesLengthAnnotation
G3V6H9G3V6H9_RAT
Nucleosome assembly protein 1-like ...
Nap1l1 rCG_48740
391Annotation score:

Annotation score:2 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the 'correct annotation' for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
AF062594 mRNA Translation: AAC67388.1

NCBI Reference Sequences

More...
RefSeqi
NP_446013.2, NM_053561.2

Genome annotation databases

Database of genes from NCBI RefSeq genomes

More...
GeneIDi
89825

KEGG: Kyoto Encyclopedia of Genes and Genomes

More...
KEGGi
rno:89825

UCSC genome browser

More...
UCSCi
RGD:71094, rat

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
AF062594 mRNA Translation: AAC67388.1
RefSeqiNP_446013.2, NM_053561.2

3D structure databases

Database of comparative protein structure models

More...
ModBasei
Search...

Protein-protein interaction databases

BioGRIDi250147, 3 interactors
IntActiQ9Z2G8, 1 interactor
STRINGi10116.ENSRNOP00000005286

PTM databases

iPTMnetiQ9Z2G8
PhosphoSitePlusiQ9Z2G8
SwissPalmiQ9Z2G8

Proteomic databases

jPOSTiQ9Z2G8
PaxDbiQ9Z2G8
PeptideAtlasiQ9Z2G8
PRIDEiQ9Z2G8

Genome annotation databases

GeneIDi89825
KEGGirno:89825
UCSCiRGD:71094, rat

Organism-specific databases

Comparative Toxicogenomics Database

More...
CTDi
4673
RGDi71094, Nap1l1

Phylogenomic databases

eggNOGiKOG1507, Eukaryota
InParanoidiQ9Z2G8
PhylomeDBiQ9Z2G8

Miscellaneous databases

Protein Ontology

More...
PROi
PR:Q9Z2G8

Family and domain databases

InterProiView protein in InterPro
IPR037231, NAP-like_sf
IPR002164, NAP_family
PANTHERiPTHR11875, PTHR11875, 1 hit
PfamiView protein in Pfam
PF00956, NAP, 1 hit
SUPFAMiSSF143113, SSF143113, 1 hit

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the 'Entry information' section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiNP1L1_RAT
<p>This subsection of the 'Entry information' section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called 'Primary (citable) accession number'.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: Q9Z2G8
<p>This subsection of the 'Entry information' section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification ('Last modified'). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical%5Fand%5Fisoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: August 15, 2003
Last sequence update: May 1, 1999
Last modified: June 2, 2021
This is version 113 of the entry and version 1 of the sequence. See complete history.
<p>This subsection of the 'Entry information' section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

<p>This section contains any relevant information that doesn't fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

Reference proteome

Documents

  1. SIMILARITY comments
    Index of protein domains and families
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again