Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
1 to 8 of 8  Show
  1. 1
    "Molecular cloning, chromosomal mapping, and developmental expression of a novel protein tyrosine phosphatase-like gene."
    Uwanogho D.A., Hardcastle Z., Balogh P., Mirza G., Thornburg K.L., Ragoussis J., Sharpe P.T.
    Genomics 62:406-416(1999) [PubMed] [Europe PMC] [Abstract]
    Category: Expression, Sequences.
    Source: UniProtKB/Swiss-Prot (reviewed).

    This publication is cited by 4 and mapped to 2 other entries.

  2. 2
    Category: Sequences.
    Strain: C57BL/6J.
    Source: UniProtKB/Swiss-Prot (reviewed).

    This publication is cited by 41320 other entries.

  3. 3
    "Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs."
    Okazaki Y., Furuno M., Kasukawa T., Adachi J., Bono H., Kondo S., Nikaido I., Osato N., Saito R., Suzuki H., Yamanaka I., Kiyosawa H., Yagi K., Tomaru Y., Hasegawa Y., Nogami A., Schonbach C., Gojobori T.
    , Baldarelli R., Hill D.P., Bult C., Hume D.A., Quackenbush J., Schriml L.M., Kanapin A., Matsuda H., Batalov S., Beisel K.W., Blake J.A., Bradt D., Brusic V., Chothia C., Corbani L.E., Cousins S., Dalla E., Dragani T.A., Fletcher C.F., Forrest A., Frazer K.S., Gaasterland T., Gariboldi M., Gissi C., Godzik A., Gough J., Grimmond S., Gustincich S., Hirokawa N., Jackson I.J., Jarvis E.D., Kanai A., Kawaji H., Kawasawa Y., Kedzierski R.M., King B.L., Konagaya A., Kurochkin I.V., Lee Y., Lenhard B., Lyons P.A., Maglott D.R., Maltais L., Marchionni L., McKenzie L., Miki H., Nagashima T., Numata K., Okido T., Pavan W.J., Pertea G., Pesole G., Petrovsky N., Pillai R., Pontius J.U., Qi D., Ramachandran S., Ravasi T., Reed J.C., Reed D.J., Reid J., Ring B.Z., Ringwald M., Sandelin A., Schneider C., Semple C.A., Setou M., Shimada K., Sultana R., Takenaka Y., Taylor M.S., Teasdale R.D., Tomita M., Verardo R., Wagner L., Wahlestedt C., Wang Y., Watanabe Y., Wells C., Wilming L.G., Wynshaw-Boris A., Yanagisawa M., Yang I., Yang L., Yuan Z., Zavolan M., Zhu Y., Zimmer A., Carninci P., Hayatsu N., Hirozane-Kishikawa T., Konno H., Nakamura M., Sakazume N., Sato K., Shiraki T., Waki K., Kawai J., Aizawa K., Arakawa T., Fukuda S., Hara A., Hashizume W., Imotani K., Ishii Y., Itoh M., Kagawa I., Miyazaki A., Sakai K., Sasaki D., Shibata K., Shinagawa A., Yasunishi A., Yoshino M., Waterston R., Lander E.S., Rogers J., Birney E., Hayashizaki Y.
    Nature 420:563-573(2002) [PubMed] [Europe PMC] [Abstract]
    Category: Sequences.
    Strain: C57BL/6J.
    Tissue: Tongue.
    Source: UniProtKB/Swiss-Prot (reviewed).

    This publication is cited by 17025 and mapped to 39759 other entries.

  4. 4
    Source: MGI:1353592.

    This publication is cited by 17022 and mapped to 28902 other entries.

  5. 5
    Source: MGI:1353592.

    This publication is mapped to 48868 other entries.

  6. 6
    "Protein tyrosine phosphatase-like A regulates myoblast proliferation and differentiation through MyoG and the cell cycling signaling pathway."
    Lin X., Yang X., Li Q., Ma Y., Cui S., He D., Lin X., Schwartz R.J., Chang J.
    Mol. Cell. Biol. 32:297-308(2012) [PubMed] [Europe PMC] [Abstract]
    Annotation: Ptpla regulates myogenesis through Myog.Imported.
    Source: MGI:1353592, GeneRIF:30963.

    This publication is mapped to 7 other entries.

  7. 7
    "HACD1, a regulator of membrane composition and fluidity, promotes myoblast fusion and skeletal muscle growth."
    Blondelle J., Ohno Y., Gache V., Guyot S., Storck S., Blanchard-Gutton N., Barthelemy I., Walmsley G., Rahier A., Gadin S., Maurer M., Guillaud L., Prola A., Ferry A., Aubin-Houzelstein G., Demarquoy J., Relaix F., Piercy R.J.
    , Blot S., Kihara A., Tiret L., Pilot-Storck F.
    J Mol Cell Biol 7:429-440(2015) [PubMed] [Europe PMC] [Abstract]
    Annotation: Loss of function in myoblasts knockout mice and spontaneously affected Labrador retrievers leads to reduced myoblast fusion (hypotrophy) associated with modified lipid composition and physical properties of membranes; Data reveal that HACD1 is a key regulator of a lipid-dependent muscle fibre growth mechanism.Imported.
    Source: MGI:1353592, GeneRIF:30963.

    This publication is mapped to 25 other entries.

  8. 8
    "The 3-hydroxyacyl-CoA dehydratases HACD1 and HACD2 exhibit functional redundancy and are active in a wide range of fatty acid elongation pathways."
    Sawai M., Uchida Y., Ohno Y., Miyamoto M., Nishioka C., Itohara S., Sassa T., Kihara A.
    J. Biol. Chem. 292:15538-15551(2017) [PubMed] [Europe PMC] [Abstract]
    Annotation: Mutations in HACD1 can result in myopathies in humans; knockout mice lacking Hacd1 develop myopathic phenotypes. Data (including data from studies using knockout mice and cultured cells from knockout mice) suggest that HACD1 and HACD2 exhibit overlapping substrate specificities and thus appear to represent redundant activities in skeletal muscle.Imported.
    Source: MGI:1353592, GeneRIF:30963.

    This publication is mapped to 6 other entries.

1 to 8 of 8  Show

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health