Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Protein

Serine/threonine-protein kinase mTOR

Gene

Mtor

Organism
Mus musculus (Mouse)
Status
Reviewed-Annotation score: -Experimental evidence at protein leveli

Functioni

Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals. MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins. Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2). Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis. This includes phosphorylation of EIF4EBP1 and release of its inhibition toward the elongation initiation factor 4E (eiF4E). Moreover, phosphorylates and activates RPS6KB1 and RPS6KB2 that promote protein synthesis by modulating the activity of their downstream targets including ribosomal protein S6, eukaryotic translation initiation factor EIF4B, and the inhibitor of translation initiation PDCD4. Stimulates the pyrimidine biosynthesis pathway, both by acute regulation through RPS6KB1-mediated phosphorylation of the biosynthetic enzyme CAD, and delayed regulation, through transcriptional enhancement of the pentose phosphate pathway which produces 5-phosphoribosyl-1-pyrophosphate (PRPP), an allosteric activator of CAD at a later step in synthesis, this function is dependent on the mTORC1 complex. Regulates ribosome synthesis by activating RNA polymerase III-dependent transcription through phosphorylation and inhibition of MAF1 an RNA polymerase III-repressor. In parallel to protein synthesis, also regulates lipid synthesis through SREBF1/SREBP1 and LPIN1. To maintain energy homeostasis mTORC1 may also regulate mitochondrial biogenesis through regulation of PPARGC1A. mTORC1 also negatively regulates autophagy through phosphorylation of ULK1. Under nutrient sufficiency, phosphorylates ULK1 at 'Ser-758', disrupting the interaction with AMPK and preventing activation of ULK1. Also prevents autophagy through phosphorylation of the autophagy inhibitor DAP. mTORC1 exerts a feedback control on upstream growth factor signaling that includes phosphorylation and activation of GRB10 a INSR-dependent signaling suppressor. Among other potential targets mTORC1 may phosphorylate CLIP1 and regulate microtubules. As part of the mTORC2 complex MTOR may regulate other cellular processes including survival and organization of the cytoskeleton. Plays a critical role in the phosphorylation at 'Ser-473' of AKT1, a pro-survival effector of phosphoinositide 3-kinase, facilitating its activation by PDK1. mTORC2 may regulate the actin cytoskeleton, through phosphorylation of PRKCA, PXN and activation of the Rho-type guanine nucleotide exchange factors RHOA and RAC1A or RAC1B. mTORC2 also regulates the phosphorylation of SGK1 at 'Ser-422'. Regulates osteoclastogenesis by adjusting the expression of CEBPB isoforms (PubMed:19440205).10 Publications

Catalytic activityi

ATP + a protein = ADP + a phosphoprotein.

Enzyme regulationi

Activation of mTORC1 by growth factors such as insulin involves AKT1-mediated phosphorylation of TSC1-TSC2, which leads to the activation of the RHEB GTPase a potent activator of the protein kinase activity of mTORC1. Insulin-stimulated and amino acid-dependent phosphorylation at Ser-1261 promotes autophosphorylation and the activation of mTORC1. Activation by amino acids requires relocalization of the mTORC1 complex to lysosomes that is mediated by the Ragulator complex, SLC38A9, and the Rag GTPases RRAGA, RRAGB, RRAGC and RRAGD. On the other hand, low cellular energy levels can inhibit mTORC1 through activation of PRKAA1 while hypoxia inhibits mTORC1 through a REDD1-dependent mechanism which may also require PRKAA1. The kinase activity of MTOR within the mTORC1 complex is positively regulated by MLST8 and negatively regulated by DEPTOR and AKT1S1. MTOR phosphorylates RPTOR which in turn inhibits mTORC1. MTOR is the target of the immunosuppressive and anti-cancer drug rapamycin which acts in complex with FKBP1A/FKBP12, and specifically inhibits its kinase activity. mTORC2 is also activated by growth factors, but seems to be nutrient-insensitive. It may be regulated by RHEB but in an indirect manner through the PI3K signaling pathway.By similarity2 Publications

GO - Molecular functioni

GO - Biological processi

  • 'de novo' pyrimidine nucleobase biosynthetic process Source: CACAO
  • brain development Source: Ensembl
  • cardiac cell development Source: CACAO
  • cardiac muscle cell development Source: MGI
  • cardiac muscle contraction Source: MGI
  • cardiac muscle tissue development Source: MGI
  • cell aging Source: Ensembl
  • cell projection organization Source: MGI
  • cellular response to amino acid starvation Source: MGI
  • cellular response to amino acid stimulus Source: MGI
  • cellular response to hypoxia Source: UniProtKB
  • cellular response to leucine Source: MGI
  • cellular response to leucine starvation Source: MGI
  • cellular response to nutrient levels Source: UniProtKB
  • cellular response to starvation Source: MGI
  • DNA repair Source: GO_Central
  • energy reserve metabolic process Source: MGI
  • germ cell development Source: MGI
  • heart morphogenesis Source: MGI
  • heart valve morphogenesis Source: MGI
  • long-term memory Source: MGI
  • maternal process involved in female pregnancy Source: MGI
  • mRNA stabilization Source: MGI
  • multicellular organism growth Source: MGI
  • negative regulation of autophagy Source: UniProtKB
  • negative regulation of calcineurin-NFAT signaling cascade Source: MGI
  • negative regulation of cell size Source: MGI
  • negative regulation of cholangiocyte apoptotic process Source: MGI
  • negative regulation of iodide transmembrane transport Source: MGI
  • negative regulation of macroautophagy Source: MGI
  • negative regulation of muscle atrophy Source: MGI
  • negative regulation of protein phosphorylation Source: MGI
  • negative regulation of protein ubiquitination Source: MGI
  • peptidyl-serine phosphorylation Source: MGI
  • peptidyl-threonine phosphorylation Source: MGI
  • phosphorylation Source: MGI
  • positive regulation of actin filament polymerization Source: MGI
  • positive regulation of cell death Source: MGI
  • positive regulation of cell growth involved in cardiac muscle cell development Source: MGI
  • positive regulation of cholangiocyte proliferation Source: MGI
  • positive regulation of dendritic spine development Source: MGI
  • positive regulation of eating behavior Source: MGI
  • positive regulation of endothelial cell proliferation Source: MGI
  • positive regulation of epithelial to mesenchymal transition Source: MGI
  • positive regulation of gene expression Source: MGI
  • positive regulation of glial cell proliferation Source: MGI
  • positive regulation of granulosa cell proliferation Source: MGI
  • positive regulation of keratinocyte migration Source: MGI
  • positive regulation of lamellipodium assembly Source: MGI
  • positive regulation of lipid biosynthetic process Source: UniProtKB
  • positive regulation of myotube differentiation Source: MGI
  • positive regulation of neurogenesis Source: MGI
  • positive regulation of neuron death Source: MGI
  • positive regulation of neuron maturation Source: MGI
  • positive regulation of neuron projection development Source: MGI
  • positive regulation of nitric oxide biosynthetic process Source: MGI
  • positive regulation of oligodendrocyte differentiation Source: MGI
  • positive regulation of peptidyl-tyrosine phosphorylation Source: MGI
  • positive regulation of protein kinase B signaling Source: MGI
  • positive regulation of protein phosphorylation Source: MGI
  • positive regulation of sensory perception of pain Source: MGI
  • positive regulation of skeletal muscle hypertrophy Source: MGI
  • positive regulation of smooth muscle cell proliferation Source: MGI
  • positive regulation of stress fiber assembly Source: MGI
  • positive regulation of transcription by RNA polymerase III Source: MGI
  • positive regulation of transcription of nucleolar large rRNA by RNA polymerase I Source: MGI
  • positive regulation of translation Source: MGI
  • positive regulation of wound healing, spreading of epidermal cells Source: MGI
  • post-embryonic development Source: MGI
  • protein autophosphorylation Source: MGI
  • protein phosphorylation Source: MGI
  • regulation of actin cytoskeleton organization Source: MGI
  • regulation of brown fat cell differentiation Source: MGI
  • regulation of carbohydrate metabolic process Source: MGI
  • regulation of carbohydrate utilization Source: MGI
  • regulation of cell growth Source: MGI
  • regulation of cell size Source: MGI
  • regulation of fatty acid beta-oxidation Source: MGI
  • regulation of glycogen biosynthetic process Source: MGI
  • regulation of GTPase activity Source: MGI
  • regulation of membrane permeability Source: MGI
  • regulation of myelination Source: MGI
  • regulation of osteoclast differentiation Source: UniProtKB
  • regulation of protein kinase activity Source: MGI
  • regulation of protein kinase B signaling Source: MGI
  • regulation of protein phosphorylation Source: MGI
  • regulation of response to food Source: MGI
  • response to activity Source: Ensembl
  • response to amino acid Source: MGI
  • response to cocaine Source: MGI
  • response to insulin Source: MGI
  • response to morphine Source: MGI
  • response to nutrient Source: MGI
  • ruffle organization Source: MGI
  • social behavior Source: MGI
  • spinal cord development Source: MGI
  • T-helper 1 cell lineage commitment Source: MGI
  • TORC1 signaling Source: MGI
  • TOR signaling Source: BHF-UCL
  • visual learning Source: MGI
  • voluntary musculoskeletal movement Source: MGI
  • wound healing Source: Ensembl

Keywordsi

Molecular functionKinase, Serine/threonine-protein kinase, Transferase
LigandATP-binding, Nucleotide-binding

Enzyme and pathway databases

ReactomeiR-MMU-1257604 PIP3 activates AKT signaling
R-MMU-1632852 Macroautophagy
R-MMU-165159 mTOR signalling
R-MMU-166208 mTORC1-mediated signalling
R-MMU-3371571 HSF1-dependent transactivation
R-MMU-380972 Energy dependent regulation of mTOR by LKB1-AMPK
R-MMU-389357 CD28 dependent PI3K/Akt signaling
R-MMU-5218920 VEGFR2 mediated vascular permeability
R-MMU-5628897 TP53 Regulates Metabolic Genes
R-MMU-6804757 Regulation of TP53 Degradation
R-MMU-8943724 Regulation of PTEN gene transcription

Names & Taxonomyi

Protein namesi
Recommended name:
Serine/threonine-protein kinase mTOR (EC:2.7.11.1)
Alternative name(s):
FK506-binding protein 12-rapamycin complex-associated protein 1
FKBP12-rapamycin complex-associated protein
Mammalian target of rapamycin
Short name:
mTOR
Mechanistic target of rapamycin
Rapamycin target protein 1
Short name:
RAPT1
Gene namesi
Name:Mtor
Synonyms:Frap, Frap1
OrganismiMus musculus (Mouse)
Taxonomic identifieri10090 [NCBI]
Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresGliresRodentiaMyomorphaMuroideaMuridaeMurinaeMusMus
Proteomesi
  • UP000000589 Componenti: Chromosome 4

Organism-specific databases

MGIiMGI:1928394 Mtor

Subcellular locationi

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte; Source: COMPARTMENTS

Keywords - Cellular componenti

Cytoplasm, Endoplasmic reticulum, Golgi apparatus, Lysosome, Membrane, Mitochondrion, Mitochondrion outer membrane, Nucleus

Pathology & Biotechi

Mutagenesis

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Mutagenesisi2035S → R: Abolishes interaction with the FKBP1A-rapamycin complex. 1 Publication1

Chemistry databases

ChEMBLiCHEMBL1255165

PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
ChainiPRO_00000888091 – 2549Serine/threonine-protein kinase mTORAdd BLAST2549

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Modified residuei1N-acetylmethionineBy similarity1
Modified residuei567PhosphoserineBy similarity1
Modified residuei1162PhosphothreonineBy similarity1
Modified residuei1218N6-acetyllysineBy similarity1
Modified residuei1261PhosphoserineCombined sources1 Publication1
Modified residuei2159PhosphoserineBy similarity1
Modified residuei2164PhosphothreonineBy similarity1
Modified residuei2173Phosphothreonine; by PKB/AKT1By similarity1
Modified residuei2446Phosphothreonine; by RPS6KB1By similarity1
Modified residuei2448Phosphoserine; by RPS6KB11 Publication1
Modified residuei2478PhosphoserineCombined sources1
Modified residuei2481PhosphoserineCombined sources1

Post-translational modificationi

Phosphorylation at Thr-2173 in the ATP-binding region by AKT1 strongly reduces kinase activity (By similarity). Autophosphorylates when part of mTORC1 or mTORC2. Phosphorylation at Ser-1261, Ser-2159 and Thr-2164 promotes autophosphorylation. Phosphorylation in the kinase domain modulates the interactions of MTOR with RPTOR and PRAS40 and leads to increased intrinsic mTORC1 kinase activity.By similarity2 Publications

Keywords - PTMi

Acetylation, Phosphoprotein

Proteomic databases

EPDiQ9JLN9
PaxDbiQ9JLN9
PeptideAtlasiQ9JLN9
PRIDEiQ9JLN9

PTM databases

iPTMnetiQ9JLN9
PhosphoSitePlusiQ9JLN9

Expressioni

Gene expression databases

BgeeiENSMUSG00000028991
GenevisibleiQ9JLN9 MM

Interactioni

Subunit structurei

Part of the mammalian target of rapamycin complex 1 (mTORC1) which contains MTOR, MLST8, RPTOR, AKT1S1/PRAS40 and DEPTOR. The mTORC1 complex is a 1 Md obligate dimer of two stoichiometric heterotetramers with overall dimensions of 290 A x 210 A x 135 A. It has a rhomboid shape and a central cavity, the dimeric interfaces are formed by interlocking interactions between the two MTOR and the two RPTOR subunits. The MLST8 subunit forms distal foot-like protuberances, and contacts only one MTOR within the complex, while the small PRAS40 localizes to the midsection of the central core, in close proximity to RPTOR. Part of the mammalian target of rapamycin complex 2 (mTORC2) which contains MTOR, MLST8, PRR5, RICTOR, MAPKAP1 and DEPTOR. Interacts with PRR5 and RICTOR; the interaction is direct within the mTORC2 complex. Interacts with WAC; WAC positively regulates MTOR activity by promoting the assembly of the TTT complex composed of TELO2, TTI1 and TTI2 and the RUVBL complex composed of RUVBL1 and RUVBL2 into the TTT-RUVBL complex which leads to the dimerization of the mTORC1 complex and its subsequent activation (By similarity). Interacts with PLPP7 and PML. Interacts with UBQLN1. Interacts with TTI1 and TELO2. Interacts with CLIP1; phosphorylates and regulates CLIP1. Interacts with NBN. Interacts with HTR6 (PubMed:23027611). Interacts with BRAT1 (By similarity).By similarity7 Publications

Binary interactionsi

Show more details

GO - Molecular functioni

Protein-protein interaction databases

BioGridi208142, 19 interactors
CORUMiQ9JLN9
DIPiDIP-40570N
IntActiQ9JLN9, 24 interactors
MINTiQ9JLN9
STRINGi10090.ENSMUSP00000099510

Chemistry databases

BindingDBiQ9JLN9

Structurei

3D structure databases

ProteinModelPortaliQ9JLN9
SMRiQ9JLN9
ModBaseiSearch...
MobiDBiSearch...

Family & Domainsi

Domains and Repeats

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Repeati16 – 53HEAT 1Add BLAST38
Repeati55 – 99HEAT 2Add BLAST45
Repeati100 – 137HEAT 3Add BLAST38
Repeati138 – 179HEAT 4Add BLAST42
Repeati180 – 220HEAT 5Add BLAST41
Repeati222 – 276HEAT 6Add BLAST55
Repeati277 – 313HEAT 7Add BLAST37
Repeati314 – 364HEAT 8Add BLAST51
Repeati365 – 409HEAT 9Add BLAST45
Repeati410 – 445HEAT 10Add BLAST36
Repeati446 – 494HEAT 11Add BLAST49
Repeati495 – 529HEAT 12Add BLAST35
Repeati530 – 563HEAT 13Add BLAST34
Repeati564 – 596HEAT 14Add BLAST33
Repeati597 – 636HEAT 15Add BLAST40
Repeati637 – 683HEAT 16Add BLAST47
Repeati686 – 724HEAT 17Add BLAST39
Repeati727 – 766HEAT 18Add BLAST40
Repeati769 – 811HEAT 19Add BLAST43
Repeati814 – 853HEAT 20Add BLAST40
Repeati857 – 893HEAT 21Add BLAST37
Repeati894 – 942HEAT 22Add BLAST49
Repeati943 – 988HEAT 23Add BLAST46
Repeati989 – 1027HEAT 24Add BLAST39
Repeati1029 – 1068HEAT 25Add BLAST40
Repeati1069 – 1105HEAT 26Add BLAST37
Repeati1106 – 1144HEAT 27Add BLAST39
Repeati1145 – 1188HEAT 28Add BLAST44
Repeati1189 – 1225HEAT 29Add BLAST37
Repeati1226 – 1273HEAT 30Add BLAST48
Repeati1274 – 1311HEAT 31Add BLAST38
Repeati1312 – 1345HEAT 32Add BLAST34
Repeati1346 – 1382TPR 1Add BLAST37
Domaini1382 – 1982FATPROSITE-ProRule annotationAdd BLAST601
Repeati1383 – 1408TPR 2Add BLAST26
Repeati1409 – 1442TPR 3Add BLAST34
Repeati1443 – 1473TPR 4Add BLAST31
Repeati1474 – 1507TPR 5Add BLAST34
Repeati1508 – 1541TPR 6Add BLAST34
Repeati1542 – 1574TPR 7Add BLAST33
Repeati1575 – 1614TPR 8Add BLAST40
Repeati1615 – 1649TPR 9Add BLAST35
Repeati1650 – 1693TPR 10Add BLAST44
Repeati1694 – 1731TPR 11Add BLAST38
Repeati1732 – 1786TPR 12Add BLAST55
Repeati1787 – 1846TPR 13Add BLAST60
Repeati1898 – 1930TPR 14Add BLAST33
Repeati1931 – 1970TPR 15Add BLAST40
Repeati1971 – 2005TPR 16Add BLAST35
Domaini2182 – 2516PI3K/PI4KPROSITE-ProRule annotationAdd BLAST335
Domaini2517 – 2549FATCPROSITE-ProRule annotationAdd BLAST33

Region

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Regioni1 – 651Interaction with NBNBy similarityAdd BLAST651
Regioni2012 – 2144Sufficient for interaction with the FKBP1A/rapamycin complexAdd BLAST133
Regioni2258 – 2296Interaction with MLST8By similarityAdd BLAST39

Domaini

The kinase domain (PI3K/PI4K) is intrinsically active but has a highly restricted catalytic center.By similarity
The FAT domain forms three discontinuous subdomains of alpha-helical TPR repeats plus a single subdomain of HEAT repeats. The four domains pack sequentially to form a C-shaped a-solenoid that clamps onto the kinase domain (By similarity).By similarity

Sequence similaritiesi

Belongs to the PI3/PI4-kinase family.Curated

Keywords - Domaini

Repeat, TPR repeat

Phylogenomic databases

eggNOGiKOG0891 Eukaryota
COG5032 LUCA
GeneTreeiENSGT00920000149065
HOGENOMiHOG000163215
HOVERGENiHBG005744
InParanoidiQ9JLN9
KOiK07203
OMAiSSHQGLM
OrthoDBiEOG091G0046
PhylomeDBiQ9JLN9
TreeFamiTF105134

Family and domain databases

Gene3Di1.10.1070.11, 1 hit
1.20.120.150, 1 hit
1.25.10.10, 4 hits
InterProiView protein in InterPro
IPR011989 ARM-like
IPR016024 ARM-type_fold
IPR024585 DUF3385_TOR
IPR003152 FATC_dom
IPR009076 FRB_dom
IPR036738 FRB_sf
IPR011009 Kinase-like_dom_sf
IPR000403 PI3/4_kinase_cat_dom
IPR036940 PI3/4_kinase_cat_sf
IPR018936 PI3/4_kinase_CS
IPR003151 PIK-rel_kinase_FAT
IPR014009 PIK_FAT
IPR026683 TOR
PANTHERiPTHR11139:SF9 PTHR11139:SF9, 1 hit
PfamiView protein in Pfam
PF11865 DUF3385, 1 hit
PF02259 FAT, 1 hit
PF02260 FATC, 1 hit
PF08771 FRB_dom, 1 hit
PF00454 PI3_PI4_kinase, 1 hit
SMARTiView protein in SMART
SM01346 DUF3385, 1 hit
SM01343 FATC, 1 hit
SM00146 PI3Kc, 1 hit
SUPFAMiSSF47212 SSF47212, 1 hit
SSF48371 SSF48371, 5 hits
SSF56112 SSF56112, 2 hits
PROSITEiView protein in PROSITE
PS51189 FAT, 1 hit
PS51190 FATC, 1 hit
PS00915 PI3_4_KINASE_1, 1 hit
PS00916 PI3_4_KINASE_2, 1 hit
PS50290 PI3_4_KINASE_3, 1 hit

Sequences (2)i

Sequence statusi: Complete.

This entry describes 2 isoformsi produced by alternative splicing. AlignAdd to basket

Isoform 1 (identifier: Q9JLN9-1) [UniParc]FASTAAdd to basket

This isoform has been chosen as the 'canonical' sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.

« Hide

        10         20         30         40         50
MLGTGPAVAT ASAATSSNVS VLQQFASGLK SRNEETRAKA AKELQHYVTM
60 70 80 90 100
ELREMSQEES TRFYDQLNHH IFELVSSSDA NERKGGILAI ASLIGVEGGN
110 120 130 140 150
STRIGRFANY LRNLLPSSDP VVMEMASKAI GRLAMAGDTF TAEYVEFEVK
160 170 180 190 200
RALEWLGADR NEGRRHAAVL VLRELAISVP TFFFQQVQPF FDNIFVAVWD
210 220 230 240 250
PKQAIREGAV AALRACLILT TQREPKEMQK PQWYRHTFEE AEKGFDETLA
260 270 280 290 300
KEKGMNRDDR IHGALLILNE LVRISSMEGE RLREEMEEIT QQQLVHDKYC
310 320 330 340 350
KDLMGFGTKP RHITPFTSFQ AVQPQQPNAL VGLLGYSSPQ GLMGFGTSPS
360 370 380 390 400
PAKSTLVESR CCRDLMEEKF DQVCQWVLKC RSSKNSLIQM TILNLLPRLA
410 420 430 440 450
AFRPSAFTDT QYLQDTMNHV LSCVKKEKER TAAFQALGLL SVAVRSEFKV
460 470 480 490 500
YLPRVLDIIR AALPPKDFAH KRQKTVQVDA TVFTCISMLA RAMGPGIQQD
510 520 530 540 550
IKELLEPMLA VGLSPALTAV LYDLSRQIPQ LKKDIQDGLL KMLSLVLMHK
560 570 580 590 600
PLRHPGMPKG LAHQLASPGL TTLPEASDVA SITLALRTLG SFEFEGHSLT
610 620 630 640 650
QFVRHCADHF LNSEHKEIRM EAARTCSRLL TPSIHLISGH AHVVSQTAVQ
660 670 680 690 700
VVADVLSKLL VVGITDPDPD IRYCVLASLD ERFDAHLAQA ENLQALFVAL
710 720 730 740 750
NDQVFEIREL AICTVGRLSS MNPAFVMPFL RKMLIQILTE LEHSGIGRIK
760 770 780 790 800
EQSARMLGHL VSNAPRLIRP YMEPILKALI LKLKDPDPDP NPGVINNVLA
810 820 830 840 850
TIGELAQVSG LEMRKWVDEL FIIIMDMLQD SSLLAKRQVA LWTLGQLVAS
860 870 880 890 900
TGYVVEPYRK YPTLLEVLLN FLKTEQNQGT RREAIRVLGL LGALDPYKHK
910 920 930 940 950
VNIGMIDQSR DASAVSLSES KSSQDSSDYS TSEMLVNMGN LPLDEFYPAV
960 970 980 990 1000
SMVALMRIFR DQSLSHHHTM VVQAITFIFK SLGLKCVQFL PQVMPTFLNV
1010 1020 1030 1040 1050
IRVCDGAIRE FLFQQLGMLV SFVKSHIRPY MDEIVTLMRE FWVMNTSIQS
1060 1070 1080 1090 1100
TIILLIEQIV VALGGEFKLY LPQLIPHMLR VFMHDNSQGR IVSIKLLAAI
1110 1120 1130 1140 1150
QLFGANLDDY LHLLLPPIVK LFDAPEVPLP SRKAALETVD RLTESLDFTD
1160 1170 1180 1190 1200
YASRIIHPIV RTLDQSPELR STAMDTLSSL VFQLGKKYQI FIPMVNKVLV
1210 1220 1230 1240 1250
RHRINHQRYD VLICRIVKGY TLADEEEDPL IYQHRMLRSS QGDALASGPV
1260 1270 1280 1290 1300
ETGPMKKLHV STINLQKAWG AARRVSKDDW LEWLRRLSLE LLKDSSSPSL
1310 1320 1330 1340 1350
RSCWALAQAY NPMARDLFNA AFVSCWSELN EDQQDELIRS IELALTSQDI
1360 1370 1380 1390 1400
AEVTQTLLNL AEFMEHSDKG PLPLRDDNGI VLLGERAAKC RAYAKALHYK
1410 1420 1430 1440 1450
ELEFQKGPTP AILESLISIN NKLQQPEAAS GVLEYAMKHF GELEIQATWY
1460 1470 1480 1490 1500
EKLHEWEDAL VAYDKKMDTN KEDPELMLGR MRCLEALGEW GQLHQQCCEK
1510 1520 1530 1540 1550
WTLVNDETQA KMARMAAAAA WGLGQWDSME EYTCMIPRDT HDGAFYRAVL
1560 1570 1580 1590 1600
ALHQDLFSLA QQCIDKARDL LDAELTAMAG ESYSRAYGAM VSCHMLSELE
1610 1620 1630 1640 1650
EVIQYKLVPE RREIIRQIWW ERLQGCQRIV EDWQKILMVR SLVVSPHEDM
1660 1670 1680 1690 1700
RTWLKYASLC GKSGRLALAH KTLVLLLGVD PSRQLDHPLP TAHPQVTYAY
1710 1720 1730 1740 1750
MKNMWKSARK IDAFQHMQHF VQTMQQQAQH AIATEDQQHK QELHKLMARC
1760 1770 1780 1790 1800
FLKLGEWQLN LQGINESTIP KVLQYYSAAT EHDRSWYKAW HAWAVMNFEA
1810 1820 1830 1840 1850
VLHYKHQNQA RDEKKKLRHA SGANITNATT AATTAASAAA ATSTEGSNSE
1860 1870 1880 1890 1900
SEAESNENSP TPSPLQKKVT EDLSKTLLLY TVPAVQGFFR SISLSRGNNL
1910 1920 1930 1940 1950
QDTLRVLTLW FDYGHWPDVN EALVEGVKAI QIDTWLQVIP QLIARIDTPR
1960 1970 1980 1990 2000
PLVGRLIHQL LTDIGRYHPQ ALIYPLTVAS KSTTTARHNA ANKILKNMCE
2010 2020 2030 2040 2050
HSNTLVQQAM MVSEELIRVA ILWHEMWHEG LEEASRLYFG ERNVKGMFEV
2060 2070 2080 2090 2100
LEPLHAMMER GPQTLKETSF NQAYGRDLME AQEWCRKYMK SGNVKDLTQA
2110 2120 2130 2140 2150
WDLYYHVFRR ISKQLPQLTS LELQYVSPKL LMCRDLELAV PGTYDPNQPI
2160 2170 2180 2190 2200
IRIQSIAPSL QVITSKQRPR KLTLMGSNGH EFVFLLKGHE DLRQDERVMQ
2210 2220 2230 2240 2250
LFGLVNTLLA NDPTSLRKNL SIQRYAVIPL STNSGLIGWV PHCDTLHALI
2260 2270 2280 2290 2300
RDYREKKKIL LNIEHRIMLR MAPDYDHLTL MQKVEVFEHA VNNTAGDDLA
2310 2320 2330 2340 2350
KLLWLKSPSS EVWFDRRTNY TRSLAVMSMV GYILGLGDRH PSNLMLDRLS
2360 2370 2380 2390 2400
GKILHIDFGD CFEVAMTREK FPEKIPFRLT RMLTNAMEVT GLDGNYRTTC
2410 2420 2430 2440 2450
HTVMEVLREH KDSVMAVLEA FVYDPLLNWR LMDTNTKGNK RSRTRTDSYS
2460 2470 2480 2490 2500
AGQSVEILDG VELGEPAHKK AGTTVPESIH SFIGDGLVKP EALNKKAIQI
2510 2520 2530 2540
INRVRDKLTG RDFSHDDTLD VPTQVELLIK QATSHENLCQ CYIGWCPFW
Length:2,549
Mass (Da):288,789
Last modified:June 15, 2010 - v2
Checksum:i56302E5171FB6DBD
GO
Isoform 2 (identifier: Q9JLN9-2) [UniParc]FASTAAdd to basket

The sequence of this isoform differs from the canonical sequence as follows:
     236-256: HTFEEAEKGFDETLAKEKGMN → VRDGSTQPLAKHFGLESCSWP
     257-2549: Missing.

Note: No experimental confirmation available.
Show »
Length:256
Mass (Da):28,467
Checksum:iF58320768DC9E928
GO

Experimental Info

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Sequence conflicti33N → K in AAH43920 (PubMed:15489334).Curated1
Sequence conflicti628R → C in AAF73196 (Ref. 1) Curated1

Alternative sequence

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Alternative sequenceiVSP_011909236 – 256HTFEE…EKGMN → VRDGSTQPLAKHFGLESCSW P in isoform 2. 1 PublicationAdd BLAST21
Alternative sequenceiVSP_011910257 – 2549Missing in isoform 2. 1 PublicationAdd BLAST2293

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
AF152838 mRNA Translation: AAF73196.1
AL731654, AL713995 Genomic DNA Translation: CAM22525.1
AL713995, AL731654 Genomic DNA Translation: CAM23943.1
CU210865 Genomic DNA Translation: CAQ51622.1
BC043920 mRNA Translation: AAH43920.1
BC112904 mRNA Translation: AAI12905.1
AK012031 mRNA Translation: BAB27985.2
CCDSiCCDS18937.1 [Q9JLN9-1]
RefSeqiNP_064393.2, NM_020009.2 [Q9JLN9-1]
UniGeneiMm.21158

Genome annotation databases

EnsembliENSMUST00000057580; ENSMUSP00000054164; ENSMUSG00000028991 [Q9JLN9-2]
ENSMUST00000103221; ENSMUSP00000099510; ENSMUSG00000028991 [Q9JLN9-1]
GeneIDi56717
KEGGimmu:56717
UCSCiuc008vuq.3 mouse [Q9JLN9-2]
uc008vur.2 mouse [Q9JLN9-1]

Keywords - Coding sequence diversityi

Alternative splicing

Similar proteinsi

Entry informationi

Entry nameiMTOR_MOUSE
AccessioniPrimary (citable) accession number: Q9JLN9
Secondary accession number(s): Q2KHT0, Q811J5, Q9CST1
Entry historyiIntegrated into UniProtKB/Swiss-Prot: April 27, 2001
Last sequence update: June 15, 2010
Last modified: July 18, 2018
This is version 169 of the entry and version 2 of the sequence. See complete history.
Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

Miscellaneousi

Keywords - Technical termi

Complete proteome, Direct protein sequencing, Reference proteome

Documents

  1. MGD cross-references
    Mouse Genome Database (MGD) cross-references in UniProtKB/Swiss-Prot
  2. Human and mouse protein kinases
    Human and mouse protein kinases: classification and index
  3. SIMILARITY comments
    Index of protein domains and families

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health