Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 74 (18 Sep 2019)
Sequence version 1 (01 Nov 1996)
Previous versions | rss
Help videoAdd a publicationFeedback
Protein

Nodal homolog 2-A

Gene

nodal2-a

Organism
Xenopus laevis (African clawed frog)
Status
Reviewed-Annotation score:

Annotation score:5 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at protein leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Cooperation and regulatory loops of multiple nodals are essential for mesendoderm patterning in early embryos. Essential for mesoderm formation and axial patterning during embryonic development. Activates the activin-like signaling pathway to induce dorsal and ventral mesoderm in animal cap ectoderm. In addition, also dorsalizes ventral marginal zone (VMZ) tissues during gastrulation. Induces muscle actin. Appears to act as both a short-range and long-range morphogen. The unprocessed protein inhibits bmp- and wnt-signaling.10 Publications

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

  • growth factor activity Source: UniProtKB-KW
  • growth factor binding Source: UniProtKB
  • morphogen activity Source: UniProtKB
  • protein heterodimerization activity Source: UniProtKB

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionDevelopmental protein, Growth factor

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Nodal homolog 2-A
Alternative name(s):
Nodal-related protein 2-A
Xnr-2-A
Short name:
Xnr2-A
Short name:
nr-2
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:nodal2-a
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiXenopus laevis (African clawed frog)
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri8355 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiAmphibiaBatrachiaAnuraPipoideaPipidaeXenopodinaeXenopusXenopus

Organism-specific databases

Xenopus laevis and tropicalis biology and genomics resource

More...
Xenbasei
XB-GENE-865706 nodal2

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte & Seán O’Donoghue; Source: COMPARTMENTS

Keywords - Cellular componenti

Secreted

<p>This section provides information on the disease(s) and phenotype(s) associated with a protein.<p><a href='/help/pathology_and_biotech_section' target='_top'>More...</a></p>Pathology & Biotechi

Mutagenesis

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/manual/pathology_and_biotech_section">'Pathology and Biotech'</a> section describes the effect of the experimental mutation of one or more amino acid(s) on the biological properties of the protein.<p><a href='/help/mutagen' target='_top'>More...</a></p>Mutagenesisi209 – 212RGVR → ALDA: Cleavage mutant which disrupts nodal signaling in a dominant negative-like manner when overexpressed. Remains secreted, retains some signaling activity and able to induce some mesoderm; when associated with 278-G--G-282. 1 Publication4
Mutagenesisi278 – 282RRPRR → GVDGG: Cleavage mutant which disrupts nodal signaling in a dominant negative-like manner when overexpressed. Remains secreted, retains some signaling activity and able to induce some mesoderm; when associated with 209-A--A-212. 3 Publications5
Mutagenesisi334C → S: Fails to induce mesoderm. 2 Publications1
Mutagenesisi346 – 348FKP → ENA: Greatly reduces muscle actin inducing activity. 1 Publication3
Mutagenesisi368C → S: No effect on mesoderm-inducing activities. 1 Publication1

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section denotes the presence of an N-terminal signal peptide.<p><a href='/help/signal' target='_top'>More...</a></p>Signal peptidei1 – 18Sequence analysisAdd BLAST18
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section describes a propeptide, which is a part of a protein that is cleaved during maturation or activation. Once cleaved, a propeptide generally has no independent biological function.<p><a href='/help/propep' target='_top'>More...</a></p>PropeptideiPRO_000027425319 – 282Sequence analysisAdd BLAST264
<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_0000274254283 – 405Nodal homolog 2-ASequence analysisAdd BLAST123

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section specifies the position and type of each covalently attached glycan group (mono-, di-, or polysaccharide).<p><a href='/help/carbohyd' target='_top'>More...</a></p>Glycosylationi71N-linked (GlcNAc...) asparagineSequence analysis1
Glycosylationi172N-linked (GlcNAc...) asparagineSequence analysis1
<p>This subsection of the PTM / Processing":/help/ptm_processing_section section describes the positions of cysteine residues participating in disulfide bonds.<p><a href='/help/disulfid' target='_top'>More...</a></p>Disulfide bondi305 ↔ 371By similarity
Disulfide bondi334 ↔ 402By similarity
Disulfide bondi338 ↔ 404By similarity
Glycosylationi343N-linked (GlcNAc...) asparagineSequence analysis1
Disulfide bondi368InterchainBy similarity

Keywords - PTMi

Cleavage on pair of basic residues, Disulfide bond, Glycoprotein

<p>This section provides information on the expression of a gene at the mRNA or protein level in cells or in tissues of multicellular organisms.<p><a href='/help/expression_section' target='_top'>More...</a></p>Expressioni

<p>This subsection of the ‘Expression’ section provides information on the expression of a gene at the mRNA or protein level in cells or in tissues of multicellular organisms. By default, the information is derived from experiments at the mRNA level, unless specified ‘at protein level’. <br></br>Examples: <a href="http://www.uniprot.org/uniprot/P92958#expression">P92958</a>, <a href="http://www.uniprot.org/uniprot/Q8TDN4#expression">Q8TDN4</a>, <a href="http://www.uniprot.org/uniprot/O14734#expression">O14734</a><p><a href='/help/tissue_specificity' target='_top'>More...</a></p>Tissue specificityi

First localized to the vegetal region of the blastula. Just prior to gastrulation (stage 10), this expression disappears and instead becomes localized to the dorsal marginal zone, with enrichment in the organizer.1 Publication

<p>This subsection of the ‘Expression’ section provides information on the expression of the gene product at various stages of a cell, tissue or organism development. By default, the information is derived from experiments at the mRNA level, unless specified ‘at the protein level’.<p><a href='/help/developmental_stage' target='_top'>More...</a></p>Developmental stagei

First expressed at late blastula (stage 9) with expression peaking at early gastrula. Expression then disappears and does not return.1 Publication

<p>This subsection of the ‘Expression’ section reports the experimentally proven effects of inducers and repressors (usually chemical compounds or environmental factors) on the level of protein (or mRNA) expression (up-regulation, down-regulation, constitutive expression).<p><a href='/help/induction' target='_top'>More...</a></p>Inductioni

By dorsal mesoderm-inducing signals including activin and other nodal-related proteins.3 Publications

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

Homodimer; disulfide-linked (By similarity). Forms heterodimers with the TGF-beta family member derriere.

By similarity1 Publication

GO - Molecular functioni

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

<p>This subsection of the ‘Family and domains’ section provides general information on the biological role of a domain. The term ‘domain’ is intended here in its wide acceptation, it may be a structural domain, a transmembrane region or a functional domain. Several domains are described in this subsection.<p><a href='/help/domain_cc' target='_top'>More...</a></p>Domaini

The pro-region is necessary but not sufficient for wnt-inhibitory activity. The central region is required for muscle induction activity.2 Publications

<p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Belongs to the TGF-beta family.Sequence analysis

Keywords - Domaini

Signal

Phylogenomic databases

Database of Orthologous Groups

More...
OrthoDBi
1518399at2759

Family and domain databases

Gene3D Structural and Functional Annotation of Protein Families

More...
Gene3Di
2.10.90.10, 1 hit

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR029034 Cystine-knot_cytokine
IPR001839 TGF-b_C
IPR001111 TGF-b_propeptide
IPR015615 TGF-beta-rel
IPR017948 TGFb_CS

The PANTHER Classification System

More...
PANTHERi
PTHR11848 PTHR11848, 1 hit

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF00019 TGF_beta, 1 hit
PF00688 TGFb_propeptide, 1 hit

Simple Modular Architecture Research Tool; a protein domain database

More...
SMARTi
View protein in SMART
SM00204 TGFB, 1 hit

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF57501 SSF57501, 1 hit

PROSITE; a protein domain and family database

More...
PROSITEi
View protein in PROSITE
PS00250 TGF_BETA_1, 1 hit
PS51362 TGF_BETA_2, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is in its mature form or if it represents the precursor.<p><a href='/help/sequence_processing' target='_top'>More...</a></p>Sequence processingi: The displayed sequence is further processed into a mature form.

Q91620-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MASLGVILFF VIASLIHGKP IHSERKAAKI PLEGSNLGYK KPNNIYGSRL
60 70 80 90 100
SQGMRYPPSM MQLYQTLILG NDTDLSILEY PVLQESDAVL SLIAKSCVVV
110 120 130 140 150
GNRWTLSFDM SSISSSNELK LAELRIRLPS FERSQDVTVE IYHTKEGQEN
160 170 180 190 200
LFMGSFKTNP SVAMGSSWKI FNLTRMLQYY LHQGEPFTNV EYIEVKNMHE
210 220 230 240 250
RAKPHVIKRG VRAEVEEGLQ RNKDNTPASS FPTERVVLVV FTRDKPTASH
260 270 280 290 300
FGSPSLIHTV ESSKYVMSEN TVRVTDTRRP RRNQKTKNTI VMNTIPSRSV
310 320 330 340 350
GKTLCRRVDM IVDFEKIEWG DRIVYPKRFN AYRCEGACPI PLNETFKPTN
360 370 380 390 400
HAYIKSLVKL YDQEKVECSS CVPVKMSPLS MLLYEDGEVV LKHHEDMIVD

ECGCN
Length:405
Mass (Da):46,067
Last modified:November 1, 1996 - v1
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:i8D852DF28AF23C88
GO

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
U29448 mRNA Translation: AAA97393.1

NCBI Reference Sequences

More...
RefSeqi
NP_001081436.1, NM_001087967.1

Genome annotation databases

Database of genes from NCBI RefSeq genomes

More...
GeneIDi
397835

KEGG: Kyoto Encyclopedia of Genes and Genomes

More...
KEGGi
xla:397835

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
U29448 mRNA Translation: AAA97393.1
RefSeqiNP_001081436.1, NM_001087967.1

3D structure databases

Database of comparative protein structure models

More...
ModBasei
Search...

SWISS-MODEL Interactive Workspace

More...
SWISS-MODEL-Workspacei
Submit a new modelling project...

Genome annotation databases

GeneIDi397835
KEGGixla:397835

Organism-specific databases

Comparative Toxicogenomics Database

More...
CTDi
397835
XenbaseiXB-GENE-865706 nodal2

Phylogenomic databases

OrthoDBi1518399at2759

Family and domain databases

Gene3Di2.10.90.10, 1 hit
InterProiView protein in InterPro
IPR029034 Cystine-knot_cytokine
IPR001839 TGF-b_C
IPR001111 TGF-b_propeptide
IPR015615 TGF-beta-rel
IPR017948 TGFb_CS
PANTHERiPTHR11848 PTHR11848, 1 hit
PfamiView protein in Pfam
PF00019 TGF_beta, 1 hit
PF00688 TGFb_propeptide, 1 hit
SMARTiView protein in SMART
SM00204 TGFB, 1 hit
SUPFAMiSSF57501 SSF57501, 1 hit
PROSITEiView protein in PROSITE
PS00250 TGF_BETA_1, 1 hit
PS51362 TGF_BETA_2, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiNOD2A_XENLA
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: Q91620
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: February 6, 2007
Last sequence update: November 1, 1996
Last modified: September 18, 2019
This is version 74 of the entry and version 1 of the sequence. See complete history.
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

<p>This section contains any relevant information that doesn’t fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Documents

  1. SIMILARITY comments
    Index of protein domains and families
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again