Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 89 (08 May 2019)
Sequence version 1 (01 Nov 1997)
Previous versions | rss
Other tutorials and videosHelp videoFeedback
Protein

Heat shock cognate 71 kDa protein

Gene

hspa8

Organism
Danio rerio (Zebrafish) (Brachydanio rerio)
Status
Reviewed-Annotation score:

Annotation score:4 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at transcript leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones. The affinity of HSP70 for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. HSP70 goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release.By similarity

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Biological processStress response
LigandATP-binding, Nucleotide-binding

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Heat shock cognate 71 kDa protein
Alternative name(s):
Heat shock 70 kDa protein 8
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:hspa8
Synonyms:hsc70
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiDanio rerio (Zebrafish) (Brachydanio rerio)
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri7955 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiActinopterygiiNeopterygiiTeleosteiOstariophysiCypriniformesCyprinidaeDanio
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
  • UP000000437 <p>A UniProt <a href="http://www.uniprot.org/manual/proteomes_manual">proteome</a> can consist of several components. <br></br>The component name refers to the genomic component encoding a set of proteins.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Unplaced

Organism-specific databases

Zebrafish Information Network genome database

More...
ZFINi
ZDB-GENE-990415-92 hspa8

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte & Seán O’Donoghue; Source: COMPARTMENTS

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00000782761 – 649Heat shock cognate 71 kDa proteinAdd BLAST649

Proteomic databases

PaxDb, a database of protein abundance averages across all three domains of life

More...
PaxDbi
Q90473

PRoteomics IDEntifications database

More...
PRIDEi
Q90473

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

GO - Molecular functioni

Protein-protein interaction databases

STRING: functional protein association networks

More...
STRINGi
7955.ENSDARP00000090766

<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

3D structure databases

SWISS-MODEL Repository - a database of annotated 3D protein structure models

More...
SMRi
Q90473

Database of comparative protein structure models

More...
ModBasei
Search...

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Region

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni2 – 386Nucleotide-binding domain (NBD)By similarityAdd BLAST385
Regioni394 – 509Substrate-binding domain (SBD)By similarityAdd BLAST116

<p>This subsection of the ‘Family and domains’ section provides general information on the biological role of a domain. The term ‘domain’ is intended here in its wide acceptation, it may be a structural domain, a transmembrane region or a functional domain. Several domains are described in this subsection.<p><a href='/help/domain_cc' target='_top'>More...</a></p>Domaini

The N-terminal nucleotide binding domain (NBD) (also known as the ATPase domain) is responsible for binding and hydrolyzing ATP. The C-terminal substrate-binding domain (SBD) (also known as peptide-binding domain) binds to the client/substrate proteins. The two domains are allosterically coupled so that, when ATP is bound to the NBD, the SBD binds relatively weakly to clients. When ADP is bound in the NBD, a conformational change enhances the affinity of the SBD for client proteins.By similarity

<p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Belongs to the heat shock protein 70 family.Curated

Phylogenomic databases

evolutionary genealogy of genes: Non-supervised Orthologous Groups

More...
eggNOGi
KOG0101 Eukaryota
COG0443 LUCA

The HOGENOM Database of Homologous Genes from Fully Sequenced Organisms

More...
HOGENOMi
HOG000228135

InParanoid: Eukaryotic Ortholog Groups

More...
InParanoidi
Q90473

Database for complete collections of gene phylogenies

More...
PhylomeDBi
Q90473

Family and domain databases

Gene3D Structural and Functional Annotation of Protein Families

More...
Gene3Di
1.20.1270.10, 1 hit
2.60.34.10, 1 hit

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR018181 Heat_shock_70_CS
IPR029048 HSP70_C_sf
IPR029047 HSP70_peptide-bd_sf
IPR013126 Hsp_70_fam

The PANTHER Classification System

More...
PANTHERi
PTHR19375 PTHR19375, 1 hit

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF00012 HSP70, 1 hit

Protein Motif fingerprint database; a protein domain database

More...
PRINTSi
PR00301 HEATSHOCK70

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF100920 SSF100920, 1 hit
SSF100934 SSF100934, 1 hit

PROSITE; a protein domain and family database

More...
PROSITEi
View protein in PROSITE
PS00297 HSP70_1, 1 hit
PS00329 HSP70_2, 1 hit
PS01036 HSP70_3, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequence (1+)i

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

This entry has 1 described isoform and 6 potential isoforms that are computationally mapped.Show allAlign All

Q90473-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MSKGPAVGID LGTTYSCVGV FQHGKVEIIA NDQGNRTTPS YVAFTDTERL
60 70 80 90 100
IGDAAKNQVA MNPTNTVLDA NRLNGRQFDD GVVQSDMKHW PFNVINDNSR
110 120 130 140 150
PKVQVEYKGE SKSFYPEEIS SMVLTKMKEI AEAYLGKTVS NAVITVPAYS
160 170 180 190 200
NDSQRQATKD AGTISGLNVL VIINEPTAAA IAYGLDKKVG AERNVLIFDL
210 220 230 240 250
GGGSFDVSIL TIEDGIFEVK STAGDTHLGG EDFDNRMVNH FITEFKRKHK
260 270 280 290 300
KDISDNKRAV RRLRTACERA KRTLSSSTQA SIEIDSLYEG IDFYTSITRA
310 320 330 340 350
RFEELNADLF RGTLDPVEKA LRDAKMDKAQ IHDIVLVGGS TRIPKIQKLL
360 370 380 390 400
QDYFNGKELN KSINPDEAVA YGAAVQAAIL SGDKSENVQD LLLLDVTPLS
410 420 430 440 450
LGIETAGGVM TVLIKRNTTI PTKQTQTFTT YSDNQPGVLI QVYEGERAMT
460 470 480 490 500
KDNNLLGKFE LTGIPPAPRG VPQIEVTFDI DANGIMNVSA VDKSTGKENK
510 520 530 540 550
ITITNDKGRL SKEDIERMVQ EAEKYKAEDD VQRDKVSAKN GLESYAFNMK
560 570 580 590 600
STVEDEKLKG KISDEDKQKI LDKCNEVIGW LDKNQTAERE EFEHQQKELE
610 620 630 640
KVCNPIITKL YQSAGGMPGG MPEGMPGGFP GAGAAPGGGS SGPTIEEVD
Length:649
Mass (Da):70,974
Last modified:November 1, 1997 - v1
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:iD486B85CA8E8938C
GO

<p>In eukaryotic reference proteomes, unreviewed entries that are likely to belong to the same gene are computationally mapped, based on gene identifiers from Ensembl, EnsemblGenomes and model organism databases.<p><a href='/help/gene_centric_isoform_mapping' target='_top'>More...</a></p>Computationally mapped potential isoform sequencesi

There are 6 potential isoforms mapped to this entry.BLASTAlignShow allAdd to basket
EntryEntry nameProtein names
Gene namesLengthAnnotation
Q6NYR4Q6NYR4_DANRE
Heat shock cognate 71 kDa protein
hspa8
649Annotation score:

Annotation score:1 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
A0A2R8Q860A0A2R8Q860_DANRE
Heat shock cognate 71 kDa protein
hspa8
654Annotation score:

Annotation score:1 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
A0A2R8QEN9A0A2R8QEN9_DANRE
Heat shock cognate 71 kDa protein
hspa8
658Annotation score:

Annotation score:1 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
Q1LY29Q1LY29_DANRE
Heat shock cognate 71 kDa protein
hspa8
188Annotation score:

Annotation score:1 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
A0A0R4IMF8A0A0R4IMF8_DANRE
Heat shock cognate 71 kDa protein
hspa8
634Annotation score:

Annotation score:1 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
Q1LY27Q1LY27_DANRE
Heat shock cognate 71 kDa protein
hspa8
127Annotation score:

Annotation score:1 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
L77146 mRNA Translation: AAB03704.1

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
L77146 mRNA Translation: AAB03704.1

3D structure databases

SMRiQ90473
ModBaseiSearch...

Protein-protein interaction databases

STRINGi7955.ENSDARP00000090766

Proteomic databases

PaxDbiQ90473
PRIDEiQ90473

Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Organism-specific databases

ZFINiZDB-GENE-990415-92 hspa8

Phylogenomic databases

eggNOGiKOG0101 Eukaryota
COG0443 LUCA
HOGENOMiHOG000228135
InParanoidiQ90473
PhylomeDBiQ90473

Miscellaneous databases

Protein Ontology

More...
PROi
PR:Q90473

Family and domain databases

Gene3Di1.20.1270.10, 1 hit
2.60.34.10, 1 hit
InterProiView protein in InterPro
IPR018181 Heat_shock_70_CS
IPR029048 HSP70_C_sf
IPR029047 HSP70_peptide-bd_sf
IPR013126 Hsp_70_fam
PANTHERiPTHR19375 PTHR19375, 1 hit
PfamiView protein in Pfam
PF00012 HSP70, 1 hit
PRINTSiPR00301 HEATSHOCK70
SUPFAMiSSF100920 SSF100920, 1 hit
SSF100934 SSF100934, 1 hit
PROSITEiView protein in PROSITE
PS00297 HSP70_1, 1 hit
PS00329 HSP70_2, 1 hit
PS01036 HSP70_3, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiHSP7C_DANRE
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: Q90473
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: November 1, 1997
Last sequence update: November 1, 1997
Last modified: May 8, 2019
This is version 89 of the entry and version 1 of the sequence. See complete history.
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

<p>This section contains any relevant information that doesn’t fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

Complete proteome, Reference proteome

Documents

  1. SIMILARITY comments
    Index of protein domains and families
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again