Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 83 (26 Feb 2020)
Sequence version 1 (01 Jun 2002)
Previous versions | rss
Help videoAdd a publicationFeedback
Protein

Cryptochrome-1

Gene

CRY1

Organism
Gallus gallus (Chicken)
Status
Reviewed-Annotation score:

Annotation score:4 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the 'correct annotation' for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at transcript leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the 'protein existence' evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, ARNTL/BMAL1, ARNTL2/BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and ARNTL/BMAL1 or ARNTL2/BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-ARNTL/BMAL1|ARNTL2/BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress ARNTL/BMAL1 transcription, respectively. CRY1 and CRY2 have redundant functions but also differential and selective contributions at least in defining the pace of the SCN circadian clock and its circadian transcriptional outputs. More potent transcriptional repressor in cerebellum and liver than CRY2, though more effective in lengthening the period of the SCN oscillator. On its side, CRY2 seems to play a critical role in tuning SCN circadian period by opposing the action of CRY1. With CRY2, is dispensable for circadian rhythm generation but necessary for the development of intercellular networks for rhythm synchrony. Capable of translocating circadian clock core proteins such as PER proteins to the nucleus (By similarity). Interacts with CLOCK-ARNTL/BMAL1 independently of PER proteins and is found at CLOCK-ARNTL/BMAL1-bound sites, suggesting that CRY may act as a molecular gatekeeper to maintain CLOCK-ARNTL/BMAL1 in a poised and repressed state until the proper time for transcriptional activation (By similarity). Represses CLOCK-ARNTL/BMAL1-mediated transcriptional activation (PubMed:11684328).By similarity1 Publication

<p>This subsection of the 'Function' section provides information relevant to cofactors. A cofactor is any non-protein substance required for a protein to be catalytically active. Some cofactors are inorganic, such as the metal atoms zinc, iron, and copper in various oxidation states. Others, such as most vitamins, are organic.<p><a href='/help/cofactor' target='_top'>More...</a></p>Cofactori

Protein has several cofactor binding sites:

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/function%5Fsection">Function</a> section describes the interaction between a single amino acid and another chemical entity. Priority is given to the annotation of physiological ligands.<p><a href='/help/binding' target='_top'>More...</a></p>Binding sitei252FAD; via amide nitrogenBy similarity1
Binding sitei289FADBy similarity1
Binding sitei355FADBy similarity1

Regions

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/function%5Fsection">Function</a> section describes a region in the protein which binds nucleotide phosphates. It always involves more than one amino acid and includes all residues involved in nucleotide-binding.<p><a href='/help/np_bind' target='_top'>More...</a></p>Nucleotide bindingi387 – 389FADBy similarity3

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionPhotoreceptor protein, Receptor, Repressor
Biological processBiological rhythms, Sensory transduction, Transcription, Transcription regulation
LigandChromophore, FAD, Flavoprotein, Nucleotide-binding

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Cryptochrome-1
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: 'Name', 'Synonyms', 'Ordered locus names' and 'ORF names'.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:CRY1
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiGallus gallus (Chicken)
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the 'taxonomic identifier' or 'taxid'.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri9031 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiArchelosauriaArchosauriaDinosauriaSaurischiaTheropodaCoelurosauriaAvesNeognathaeGalloanseraeGalliformesPhasianidaePhasianinaeGallus
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
  • UP000000539 <p>A UniProt <a href="http://www.uniprot.org/manual/proteomes%5Fmanual">proteome</a> can consist of several components.<br></br>The component name refers to the genomic component encoding a set of proteins.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Unplaced

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte & Seán O’Donoghue; Source: COMPARTMENTS

Keywords - Cellular componenti

Cytoplasm, Nucleus

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the 'PTM / Processing' section describes the extent of a polypeptide chain in the mature protein following processing or proteolytic cleavage.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00002611451 – 621Cryptochrome-1Add BLAST621

Proteomic databases

PaxDb, a database of protein abundance averages across all three domains of life

More...
PaxDbi
Q8QG61

<p>This section provides information on the expression of a gene at the mRNA or protein level in cells or in tissues of multicellular organisms.<p><a href='/help/expression_section' target='_top'>More...</a></p>Expressioni

<p>This subsection of the 'Expression' section provides information on the expression of a gene at the mRNA or protein level in cells or in tissues of multicellular organisms. By default, the information is derived from experiments at the mRNA level, unless specified 'at protein level'.<br></br>Examples: <a href="http://www.uniprot.org/uniprot/P92958#expression">P92958</a>, <a href="http://www.uniprot.org/uniprot/Q8TDN4#expression">Q8TDN4</a>, <a href="http://www.uniprot.org/uniprot/O14734#expression">O14734</a><p><a href='/help/tissue_specificity' target='_top'>More...</a></p>Tissue specificityi

Expressed in the pineal gland.1 Publication

<p>This subsection of the 'Expression' section reports the experimentally proven effects of inducers and repressors (usually chemical compounds or environmental factors) on the level of protein (or mRNA) expression (up-regulation, down-regulation, constitutive expression).<p><a href='/help/induction' target='_top'>More...</a></p>Inductioni

Up-regulated by light. Higher levels in light/dark cycle than in total darkness.1 Publication

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction%5Fsection">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function%5Fsection">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

Component of the circadian core oscillator, which includes the CRY proteins, CLOCK or NPAS2, ARNTL/BMAL1 or ARNTL2/BMAL2, CSNK1E, and the PER proteins.

By similarity

Protein-protein interaction databases

STRING: functional protein association networks

More...
STRINGi
9031.ENSGALP00000020598

<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

3D structure databases

SWISS-MODEL Repository - a database of annotated 3D protein structure models

More...
SMRi
Q8QG61

Database of comparative protein structure models

More...
ModBasei
Search...

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Domains and Repeats

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/family%5Fand%5Fdomains%5Fsection">Family and Domains</a> section describes the position and type of a domain, which is defined as a specific combination of secondary structures organized into a characteristic three-dimensional structure or fold.<p><a href='/help/domain' target='_top'>More...</a></p>Domaini3 – 132Photolyase/cryptochrome alpha/betaAdd BLAST130

Motif

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the 'Family and Domains' section describes a short (usually not more than 20 amino acids) conserved sequence motif of biological significance.<p><a href='/help/motif' target='_top'>More...</a></p>Motifi50 – 54LIR 1By similarity5
Motifi82 – 87LIR 2By similarity6
Motifi151 – 156LIR 3By similarity6
Motifi255 – 260LIR 4By similarity6
Motifi271 – 276LIR 5By similarity6
Motifi285 – 290LIR 6By similarity6
Motifi335 – 339LIR 7By similarity5
Motifi379 – 384LIR 8By similarity6
Motifi395 – 400LIR 9By similarity6
Motifi411 – 416LIR 10By similarity6
Motifi430 – 435LIR 11By similarity6
Motifi486 – 491LIR 12By similarity6
Motifi492 – 497LIR 13By similarity6

<p>This subsection of the 'Family and domains' section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Belongs to the DNA photolyase class-1 family.Curated

Phylogenomic databases

evolutionary genealogy of genes: Non-supervised Orthologous Groups

More...
eggNOGi
KOG0133 Eukaryota
COG0415 LUCA

InParanoid: Eukaryotic Ortholog Groups

More...
InParanoidi
Q8QG61

KEGG Orthology (KO)

More...
KOi
K02295

Database of Orthologous Groups

More...
OrthoDBi
378952at2759

Database for complete collections of gene phylogenies

More...
PhylomeDBi
Q8QG61

Family and domain databases

Gene3D Structural and Functional Annotation of Protein Families

More...
Gene3Di
3.40.50.620, 1 hit

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR036134 Crypto/Photolyase_FAD-like_sf
IPR036155 Crypto/Photolyase_N_sf
IPR005101 Cryptochr/Photolyase_FAD-bd
IPR006050 DNA_photolyase_N
IPR014729 Rossmann-like_a/b/a_fold

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF00875 DNA_photolyase, 1 hit
PF03441 FAD_binding_7, 1 hit

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF48173 SSF48173, 1 hit
SSF52425 SSF52425, 1 hit

PROSITE; a protein domain and family database

More...
PROSITEi
View protein in PROSITE
PS51645 PHR_CRY_ALPHA_BETA, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence%5Flength">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences%5Fsection">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical%5Fand%5Fisoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

Q8QG61-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MGVNAVHWFR KGLRLHDNPA LRECIRGADT VRCVYILDPW FAGSSNVGIN
60 70 80 90 100
RWRFLLQCLE DLDANLRKLN SRLFVIRGQP ADVFPRLFKE WSIAKLSIEY
110 120 130 140 150
DSEPFGKERD AAIKKLASEA GVEVIVRISH TLYDLDKIIE LNGGQPPLTY
160 170 180 190 200
KRFQTLISRM EPLEMPVETI TPEVMQKCTT PVSDDHDEKY GVPSLEELGF
210 220 230 240 250
DTDGLPSAVW PGGETEALTR LERHLERKAW VANFERPRMN ANSLLASPTG
260 270 280 290 300
LSPYLRFGCL SCRLFYFKLT DLYKKVKKNS SPPLSLYGQL LWREFFYTAA
310 320 330 340 350
TNNPRFDKME GNPICVQIPW DKNPEALAKW AEGRTGFPWI DAIMTQLRQE
360 370 380 390 400
GWIHHLARHA VACFLTRGDL WISWEEGMKV FEELLLDADW SVNAGSWMWL
410 420 430 440 450
SCSSFFQQFF HCYCPVGFGR RTDPNGDYIR RYLPVLRGFP AKYIYDPWNA
460 470 480 490 500
PESVQKAAKC VIGVNYPKPM VNHAEASRLN IERMKQIYQQ LSRYRGLGLL
510 520 530 540 550
ATVPSNPNGN GNGGLMSFSP GESISGCSSA GGAQLGTGDG QTVGVQTCAL
560 570 580 590 600
GDSHTGGSGV QQQGYCQASS ILRYAHGDNQ QSHLMQPGRA SLGTGISAGK
610 620
RPNPEEETQS VGPKVQRQST N
Length:621
Mass (Da):69,672
Last modified:June 1, 2002 - v1
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:i5E549707689664E3
GO

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
AY034432 mRNA Translation: AAK61385.1

NCBI Reference Sequences

More...
RefSeqi
NP_989576.1, NM_204245.1

Genome annotation databases

Database of genes from NCBI RefSeq genomes

More...
GeneIDi
374093

KEGG: Kyoto Encyclopedia of Genes and Genomes

More...
KEGGi
gga:374093

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
AY034432 mRNA Translation: AAK61385.1
RefSeqiNP_989576.1, NM_204245.1

3D structure databases

SMRiQ8QG61
ModBaseiSearch...

Protein-protein interaction databases

STRINGi9031.ENSGALP00000020598

Proteomic databases

PaxDbiQ8QG61

Genome annotation databases

GeneIDi374093
KEGGigga:374093

Organism-specific databases

Comparative Toxicogenomics Database

More...
CTDi
1407

Phylogenomic databases

eggNOGiKOG0133 Eukaryota
COG0415 LUCA
InParanoidiQ8QG61
KOiK02295
OrthoDBi378952at2759
PhylomeDBiQ8QG61

Miscellaneous databases

Protein Ontology

More...
PROi
PR:Q8QG61

Family and domain databases

Gene3Di3.40.50.620, 1 hit
InterProiView protein in InterPro
IPR036134 Crypto/Photolyase_FAD-like_sf
IPR036155 Crypto/Photolyase_N_sf
IPR005101 Cryptochr/Photolyase_FAD-bd
IPR006050 DNA_photolyase_N
IPR014729 Rossmann-like_a/b/a_fold
PfamiView protein in Pfam
PF00875 DNA_photolyase, 1 hit
PF03441 FAD_binding_7, 1 hit
SUPFAMiSSF48173 SSF48173, 1 hit
SSF52425 SSF52425, 1 hit
PROSITEiView protein in PROSITE
PS51645 PHR_CRY_ALPHA_BETA, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the 'Entry information' section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiCRY1_CHICK
<p>This subsection of the 'Entry information' section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called 'Primary (citable) accession number'.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: Q8QG61
<p>This subsection of the 'Entry information' section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification ('Last modified'). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical%5Fand%5Fisoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: November 28, 2006
Last sequence update: June 1, 2002
Last modified: February 26, 2020
This is version 83 of the entry and version 1 of the sequence. See complete history.
<p>This subsection of the 'Entry information' section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

<p>This section contains any relevant information that doesn't fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

Reference proteome

Documents

  1. SIMILARITY comments
    Index of protein domains and families
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again