Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 126 (10 Apr 2019)
Sequence version 2 (28 Nov 2006)
Previous versions | rss
Other tutorials and videosHelp videoFeedback
Protein

Period circadian protein homolog 1

Gene

Per1

Organism
Rattus norvegicus (Rat)
Status
Reviewed-Annotation score:

Annotation score:5 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at protein leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, ARNTL/BMAL1, ARNTL2/BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and ARNTL/BMAL1 or ARNTL2/BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-ARNTL/BMAL1|ARNTL2/BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress ARNTL/BMAL1 transcription, respectively. Regulates circadian target genes expression at post-transcriptional levels, but may not be required for the repression at transcriptional level. Controls PER2 protein decay. Represses CRY2 preventing its repression on CLOCK/ARNTL target genes such as FXYD5 and SCNN1A in kidney and PPARA in liver. Besides its involvement in the maintenance of the circadian clock, has an important function in the regulation of several processes. Participates in the repression of glucocorticoid receptor NR3C1/GR-induced transcriptional activity by reducing the association of NR3C1/GR to glucocorticoid response elements (GREs) by ARNTL:CLOCK. Plays a role in the modulation of the neuroinflammatory state via the regulation of inflammatory mediators release, such as CCL2 and IL6. In spinal astrocytes, negatively regulates the MAPK14/p38 and MAPK8/JNK MAPK cascades as well as the subsequent activation of NFkappaB. Coordinately regulates the expression of multiple genes that are involved in the regulation of renal sodium reabsorption. Can act as gene expression activator in a gene and tissue specific manner, in kidney enhances WNK1 and SLC12A3 expression in collaboration with CLOCK. Modulates hair follicle cycling. Represses the CLOCK-ARNTL/BMAL1 induced transcription of BHLHE40/DEC1.1 Publication

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Biological processBiological rhythms, Transcription, Transcription regulation

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Period circadian protein homolog 1
Short name:
rPER1
Alternative name(s):
Circadian clock protein PERIOD 1
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:Per1Imported
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiRattus norvegicus (Rat)
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri10116 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresGliresRodentiaMyomorphaMuroideaMuridaeMurinaeRattus
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
  • UP000002494 <p>A UniProt <a href="http://www.uniprot.org/manual/proteomes_manual">proteome</a> can consist of several components. <br></br>The component name refers to the genomic component encoding a set of proteins.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Unplaced

Organism-specific databases

Rat genome database

More...
RGDi
727863 Per1

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte & Seán O’Donoghue; Source: COMPARTMENTS

Keywords - Cellular componenti

Cytoplasm, Nucleus

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00001626291 – 1293Period circadian protein homolog 1Add BLAST1293

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei121Phosphothreonine; by CSNK1ESequence analysis1
Modified residuei122Phosphoserine; by CSNK1ESequence analysis1
Modified residuei126Phosphoserine; by CSNK1ESequence analysis1
Modified residuei660PhosphoserineBy similarity1
Modified residuei662PhosphoserineBy similarity1
Modified residuei703PhosphoserineBy similarity1
Modified residuei814PhosphoserineBy similarity1
Modified residuei975PhosphoserineBy similarity1
Modified residuei976PhosphoserineBy similarity1

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

Phosphorylated on serine residues by CSNK1D, CSNK1E and probably also by CSNK1G2. Phosphorylation by CSNK1D or CSNK1E promotes nuclear location of PER proteins as well as ubiquitination and subsequent degradation. May be dephosphorylated by PP1.By similarity
Ubiquitinated; requires phosphorylation by CSNK1E and interaction with BTRC and FBXW11. Deubiquitinated by USP2.By similarity

Keywords - PTMi

Phosphoprotein, Ubl conjugation

Proteomic databases

PaxDb, a database of protein abundance averages across all three domains of life

More...
PaxDbi
Q8CHI5

PRoteomics IDEntifications database

More...
PRIDEi
Q8CHI5

<p>This section provides information on the expression of a gene at the mRNA or protein level in cells or in tissues of multicellular organisms.<p><a href='/help/expression_section' target='_top'>More...</a></p>Expressioni

<p>This subsection of the ‘Expression’ section provides information on the expression of a gene at the mRNA or protein level in cells or in tissues of multicellular organisms. By default, the information is derived from experiments at the mRNA level, unless specified ‘at protein level’. <br></br>Examples: <a href="http://www.uniprot.org/uniprot/P92958#expression">P92958</a>, <a href="http://www.uniprot.org/uniprot/Q8TDN4#expression">Q8TDN4</a>, <a href="http://www.uniprot.org/uniprot/O14734#expression">O14734</a><p><a href='/help/tissue_specificity' target='_top'>More...</a></p>Tissue specificityi

Expressed in pancreas. In the CNS, highly expressed in the SCN, internal granular layer of granular cells of the olfactory bulb, tuberculum olfactorium, piriform cortex, gyrus dentatus of the hippocampus, cerebellum, pars tuberalis/median eminence, and pituitary, and moderately in the tenia tecta, caudate putamen, accumbens nucleus, spinal cord, superior and inferior colliculus and pineal gland.3 Publications

<p>This subsection of the ‘Expression’ section reports the experimentally proven effects of inducers and repressors (usually chemical compounds or environmental factors) on the level of protein (or mRNA) expression (up-regulation, down-regulation, constitutive expression).<p><a href='/help/induction' target='_top'>More...</a></p>Inductioni

In pancreas, expression exhibits a circadian rhythm in the presence of light/dark cycles.1 Publication

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

Homodimer (By similarity). Component of the circadian core oscillator, which includes the CRY proteins, CLOCK or NPAS2, ARNTL/BMAL1 or ARNTL2/BMAL2, CSNK1D and/or CSNK1E, TIMELESS, and the PER proteins (By similarity). Interacts directly with TIMELESS, PER2, PER3, CRY1 and CRY2 (By similarity). Interacts with ARNTL/BMAL1 and CLOCK (By similarity). Interacts with GPRASP1 (PubMed:11597585). Interacts (phosphorylated) with BTRC and FBXW11; the interactions trigger proteasomal degradation (By similarity). Interacts with NONO and WDR5 (PubMed:15860628). Interacts with SFPQ (By similarity). Interacts with USP2 (By similarity).By similarity2 Publications

GO - Molecular functioni

Protein-protein interaction databases

CORUM comprehensive resource of mammalian protein complexes

More...
CORUMi
Q8CHI5

STRING: functional protein association networks

More...
STRINGi
10116.ENSRNOP00000053964

<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

3D structure databases

Protein Model Portal of the PSI-Nature Structural Biology Knowledgebase

More...
ProteinModelPortali
Q8CHI5

SWISS-MODEL Repository - a database of annotated 3D protein structure models

More...
SMRi
Q8CHI5

Database of comparative protein structure models

More...
ModBasei
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Domains and Repeats

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/family_and_domains_section">Family and Domains</a> section describes the position and type of a domain, which is defined as a specific combination of secondary structures organized into a characteristic three-dimensional structure or fold.<p><a href='/help/domain' target='_top'>More...</a></p>Domaini208 – 275PAS 1PROSITE-ProRule annotationAdd BLAST68
Domaini348 – 414PAS 2PROSITE-ProRule annotationAdd BLAST67
Domaini422 – 465PACSequence analysisAdd BLAST44

Region

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni1 – 151Interaction with BTRCBy similarityAdd BLAST151
Regioni596 – 814Required for phosphorylation by CSNK1EBy similarityAdd BLAST219
Regioni1145 – 1293CRY binding domainBy similarityAdd BLAST149

Motif

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes a short (usually not more than 20 amino acids) conserved sequence motif of biological significance.<p><a href='/help/motif' target='_top'>More...</a></p>Motifi138 – 147Nuclear export signal 1By similarity10
Motifi489 – 498Nuclear export signal 2By similarity10
Motifi823 – 839Nuclear localization signalBy similarityAdd BLAST17
Motifi978 – 985Nuclear export signal 3By similarity8
Motifi1039 – 1043LXXLL5

Compositional bias

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes the position of regions of compositional bias within the protein and the particular amino acids that are over-represented within those regions.<p><a href='/help/compbias' target='_top'>More...</a></p>Compositional biasi49 – 129Ser-richAdd BLAST81
Compositional biasi844 – 968Pro-richAdd BLAST125
Compositional biasi1026 – 1100Ser-richAdd BLAST75
Compositional biasi1221 – 1263Gly-richAdd BLAST43
Compositional biasi1272 – 1275Poly-Glu4
Compositional biasi1279 – 1282Poly-Ser4

Keywords - Domaini

Repeat

Phylogenomic databases

evolutionary genealogy of genes: Non-supervised Orthologous Groups

More...
eggNOGi
ENOG410IMRF Eukaryota
ENOG410ZBUP LUCA

The HOGENOM Database of Homologous Genes from Fully Sequenced Organisms

More...
HOGENOMi
HOG000231111

The HOVERGEN Database of Homologous Vertebrate Genes

More...
HOVERGENi
HBG008167

InParanoid: Eukaryotic Ortholog Groups

More...
InParanoidi
Q8CHI5

KEGG Orthology (KO)

More...
KOi
K21944

Database of Orthologous Groups

More...
OrthoDBi
145617at2759

Database for complete collections of gene phylogenies

More...
PhylomeDBi
Q8CHI5

TreeFam database of animal gene trees

More...
TreeFami
TF318445

Family and domain databases

Conserved Domains Database

More...
CDDi
cd00130 PAS, 1 hit

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR000014 PAS
IPR035965 PAS-like_dom_sf
IPR013655 PAS_fold_3
IPR022728 Period_circadian-like_C

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF08447 PAS_3, 1 hit
PF12114 Period_C, 1 hit

Simple Modular Architecture Research Tool; a protein domain database

More...
SMARTi
View protein in SMART
SM00091 PAS, 2 hits

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF55785 SSF55785, 1 hit

PROSITE; a protein domain and family database

More...
PROSITEi
View protein in PROSITE
PS50112 PAS, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>.<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequence (1+)i

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

This entry has 1 described isoform and 1 potential isoform that is computationally mapped.Show allAlign All

Q8CHI5-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MSGPLEGADG GGDPRPGEPF CPGGVPSPGA PQHRPCPGPS LADDTDANSN
60 70 80 90 100
GSSGNESNGH ESRGASQRSS HSSSSGNGKD SALLETTESS KSTNSQSPSP
110 120 130 140 150
PSSSIAYSLL SASSEQDNPS TSGCSSEQSA RARTQKELMT ALRELKLRLP
160 170 180 190 200
PERRGKGRSG TLATLQYALA CVKQVQANQE YYQQWSLEEG EPCAMDMSTY
210 220 230 240 250
TLEELEHITS EYTLRNQDTF SVAVSFLTGR IVYISEQAGV LLRCKRDVFR
260 270 280 290 300
GARFSELLAP QDVGVFYGST TPSRLPTWGT GTSAGSGLKD FTQEKSVFCR
310 320 330 340 350
IRGGPDRDPG PRYQPFRLTP YVTKIRVSDG APAQPCCLLI AERIHSGYEA
360 370 380 390 400
PRIPPDKRIF TTRHTPSCLF QDVDERAAPL LGYLPQDLLG APVLLFLHPE
410 420 430 440 450
DRPLMLAIHK KILQLAGQPF DHSPIRFCAR NGEYVTMDTS WAGFVHPWSR
460 470 480 490 500
KVAFVLGRHK VRTAPLNEDV FTPPVPSPAP SLDSDIQELS EQIHRLLLQP
510 520 530 540 550
VHSSSTTGLC GVGPLMSPGP LHSPGSSSDS NGGDAEGPGP PAPVTFQQIC
560 570 580 590 600
KDVHLVKHQG QQLFIESRAK PPPRPRLLAT GTFKAKVLPC QSPNPELEVA
610 620 630 640 650
PAPDQASLAL APEEPERKES SGCSYQQINC LDSILRYLES CNIPNTTKRK
660 670 680 690 700
CASSSCTASS ASDDDKQRAG PVPVGAKKDT SSAVLSGEGA TPRKEPVVGG
710 720 730 740 750
TLSPLALANK AESVVSVTSQ CSFSSTIVHV GDKKPPESDI IMMEDLPGLA
760 770 780 790 800
PGPAPSPAPS PTVAPDPAPD AYRPVGLTKA VLSLHTQKEE QAFLSRFRDL
810 820 830 840 850
GRLRGLDTSS VAPSAPGCHH GPIPSGRRHH CRSKAKRSRH HQTPRPETPC
860 870 880 890 900
YVSHPSPVPS SGPWPPPPAT TPFPAVVQPY PLPVFSPRGG PQPLPPAPTS
910 920 930 940 950
VSPATFPSPL VTPMVALVLP NYLFPSPTSY PYGVSQAPVE GPPTPASHSP
960 970 980 990 1000
SPSLPPPPPS PPHRPDSPLF NSRCSSPLQL NLLQLEESPR TEGGAAAGGP
1010 1020 1030 1040 1050
GSSAGPLPPS EESAEPEPRL VEVTESSNQD ALSGSSDLLE LLLQEDSRSG
1060 1070 1080 1090 1100
TGSAASGSLG SGLGSGSGSG SHEGGSTSAS ITRSSQSSHT SKYFGSIDSS
1110 1120 1130 1140 1150
EAEAGAAQAR TEPGDQVIKY VLQDPIWLLM ANADQHVMMT YQVPSRDAAS
1160 1170 1180 1190 1200
VLKQDRERLR AMQKQQPRFS EDQRRELGAV HSWVRKGQLP QALDVTACVD
1210 1220 1230 1240 1250
CGSSVQDPGH SDDPLFSELD GLGLEPMEEG GGEGGGVGGG GGGVGGGGGD
1260 1270 1280 1290
GGEEAQTQIG TKGSSSQDSA MEEEEQGGSS SSPALPAEEN GTS
Length:1,293
Mass (Da):136,164
Last modified:November 28, 2006 - v2
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:i3A9DAB0C539AB175
GO

<p>In eukaryotic reference proteomes, unreviewed entries that are likely to belong to the same gene are computationally mapped, based on gene identifiers from Ensembl, EnsemblGenomes and model organism databases.<p><a href='/help/gene_centric_isoform_mapping' target='_top'>More...</a></p>Computationally mapped potential isoform sequencesi

There is 1 potential isoform mapped to this entry.BLASTAlignShow allAdd to basket
EntryEntry nameProtein names
Gene namesLengthAnnotation
A0A0H2UHZ7A0A0H2UHZ7_RAT
Period circadian protein homolog 1
Per1
1,240Annotation score:

Annotation score:3 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>

Experimental Info

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Sequence’ section reports difference(s) between the canonical sequence (displayed by default in the entry) and the different sequence submissions merged in the entry. These various submissions may originate from different sequencing projects, different types of experiments, or different biological samples. Sequence conflicts are usually of unknown origin.<p><a href='/help/conflict' target='_top'>More...</a></p>Sequence conflicti1242 – 1244GGV → SCR in BAC53666 (Ref. 2) Curated3

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
AY903228 mRNA Translation: AAX85358.1
AY903229 mRNA Translation: AAX85359.1
AY903230 mRNA Translation: AAX85360.1
AB092976 mRNA Translation: BAC53666.1

NCBI Reference Sequences

More...
RefSeqi
NP_001029297.1, NM_001034125.1
XP_006246675.1, XM_006246613.3
XP_006246676.1, XM_006246614.3

UniGene gene-oriented nucleotide sequence clusters

More...
UniGenei
Rn.34433

Genome annotation databases

Database of genes from NCBI RefSeq genomes

More...
GeneIDi
287422

KEGG: Kyoto Encyclopedia of Genes and Genomes

More...
KEGGi
rno:287422

UCSC genome browser

More...
UCSCi
RGD:727863 rat

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
AY903228 mRNA Translation: AAX85358.1
AY903229 mRNA Translation: AAX85359.1
AY903230 mRNA Translation: AAX85360.1
AB092976 mRNA Translation: BAC53666.1
RefSeqiNP_001029297.1, NM_001034125.1
XP_006246675.1, XM_006246613.3
XP_006246676.1, XM_006246614.3
UniGeneiRn.34433

3D structure databases

ProteinModelPortaliQ8CHI5
SMRiQ8CHI5
ModBaseiSearch...
MobiDBiSearch...

Protein-protein interaction databases

CORUMiQ8CHI5
STRINGi10116.ENSRNOP00000053964

Proteomic databases

PaxDbiQ8CHI5
PRIDEiQ8CHI5

Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Genome annotation databases

GeneIDi287422
KEGGirno:287422
UCSCiRGD:727863 rat

Organism-specific databases

Comparative Toxicogenomics Database

More...
CTDi
5187
RGDi727863 Per1

Phylogenomic databases

eggNOGiENOG410IMRF Eukaryota
ENOG410ZBUP LUCA
HOGENOMiHOG000231111
HOVERGENiHBG008167
InParanoidiQ8CHI5
KOiK21944
OrthoDBi145617at2759
PhylomeDBiQ8CHI5
TreeFamiTF318445

Miscellaneous databases

Protein Ontology

More...
PROi
PR:Q8CHI5

Family and domain databases

CDDicd00130 PAS, 1 hit
InterProiView protein in InterPro
IPR000014 PAS
IPR035965 PAS-like_dom_sf
IPR013655 PAS_fold_3
IPR022728 Period_circadian-like_C
PfamiView protein in Pfam
PF08447 PAS_3, 1 hit
PF12114 Period_C, 1 hit
SMARTiView protein in SMART
SM00091 PAS, 2 hits
SUPFAMiSSF55785 SSF55785, 1 hit
PROSITEiView protein in PROSITE
PS50112 PAS, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiPER1_RAT
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: Q8CHI5
Secondary accession number(s): Q2KMM8
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: March 15, 2005
Last sequence update: November 28, 2006
Last modified: April 10, 2019
This is version 126 of the entry and version 2 of the sequence. See complete history.
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

<p>This section contains any relevant information that doesn’t fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

Complete proteome, Reference proteome
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again