Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 59 (18 Sep 2019)
Sequence version 1 (05 Jul 2004)
Previous versions | rss
Help videoAdd a publicationFeedback
Protein

Envelope glycoprotein E

Gene

gE

Organism
Human herpesvirus 1 (strain F) (HHV-1) (Human herpes simplex virus 1)
Status
Reviewed-Annotation score:

Annotation score:5 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at protein leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

In epithelial cells, the heterodimer gE/gI is required for the cell-to-cell spread of the virus, by sorting nascent virions to cell junctions. Once the virus reaches the cell junctions, virus particles can spread to adjacent cells extremely rapidly through interactions with cellular receptors that accumulate at these junctions. Implicated in basolateral spread in polarized cells. In neuronal cells, gE/gI is essential for the anterograde spread of the infection throughout the host nervous system. Together with US9, the heterodimer gE/gI is involved in the sorting and transport of viral structural components toward axon tips.4 Publications
The heterodimer gE/gI serves as a receptor for the Fc part of host IgG. Dissociation of gE/gI from IgG occurs at acidic pH. May thus be involved in anti-HSV antibodies bipolar bridging, followed by intracellular endocytosis and degradation, thereby interfering with host IgG-mediated immune responses (By similarity).By similarity

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Biological processHost-virus interaction, Viral immunoevasion

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Envelope glycoprotein E
Short name:
gE
Alternative name(s):
gE-1
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:gE
ORF Names:US8
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiHuman herpesvirus 1 (strain F) (HHV-1) (Human herpes simplex virus 1)
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri10304 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiVirusesHerpesviralesHerpesviridaeAlphaherpesvirinaeSimplexvirus
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section only exists in viral entries and indicates the host(s) either as a specific organism or taxonomic group of organisms that are susceptible to be infected by a virus.<p><a href='/help/virus_host' target='_top'>More...</a></p>Virus hostiHomo sapiens (Human) [TaxID: 9606]

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Topology

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/subcellular_location_section">'Subcellular location'</a> section describes the subcellular compartment where each non-membrane region of a membrane-spanning protein is found.<p><a href='/help/topo_dom' target='_top'>More...</a></p>Topological domaini21 – 421Virion surfaceSequence analysisAdd BLAST401
<p>This subsection of the <a href="http://www.uniprot.org/help/subcellular_location_section">'Subcellular location'</a> section describes the extent of a membrane-spanning region of the protein. It denotes the presence of both alpha-helical transmembrane regions and the membrane spanning regions of beta-barrel transmembrane proteins.<p><a href='/help/transmem' target='_top'>More...</a></p>Transmembranei422 – 442HelicalSequence analysisAdd BLAST21
Topological domaini443 – 552IntravirionSequence analysisAdd BLAST110

GO - Cellular componenti

Keywords - Cellular componenti

Host cell junction, Host cell membrane, Host Golgi apparatus, Host membrane, Membrane, Viral envelope protein, Virion

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section denotes the presence of an N-terminal signal peptide.<p><a href='/help/signal' target='_top'>More...</a></p>Signal peptidei1 – 20Sequence analysisAdd BLAST20
<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_000003822621 – 552Envelope glycoprotein EAdd BLAST532

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section specifies the position and type of each covalently attached glycan group (mono-, di-, or polysaccharide).<p><a href='/help/carbohyd' target='_top'>More...</a></p>Glycosylationi124N-linked (GlcNAc...) asparagine; by hostSequence analysis1
<p>This subsection of the ‘PTM / Processing’ section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei176Sulfotyrosine; by hostSequence analysis1
Glycosylationi245N-linked (GlcNAc...) asparagine; by hostSequence analysis1
<p>This subsection of the PTM / Processing":/help/ptm_processing_section section describes the positions of cysteine residues participating in disulfide bonds.<p><a href='/help/disulfid' target='_top'>More...</a></p>Disulfide bondi273 ↔ 299By similarity
Disulfide bondi282 ↔ 291By similarity
Disulfide bondi316 ↔ 325By similarity
Modified residuei478Phosphoserine; by host CK2By similarity1
Modified residuei479Phosphoserine; by host CK2By similarity1
Modified residuei505PhosphoserineBy similarity1

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

Phosphorylated on serines within the acidic cluster. Phosphorylation determines whether endocytosed viral gE traffics to the trans-Golgi network or recycles to the cell membrane.Curated
N-glycosylated, and sulfated.By similarity

Keywords - PTMi

Disulfide bond, Glycoprotein, Phosphoprotein, Sulfation

Proteomic databases

PRoteomics IDEntifications database

More...
PRIDEi
Q703F0

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

Interacts with gI; this interaction enhances the Fc receptor function of gE. The heterodimer gE/gI interacts with the Fc part of host IgG.

Interacts (via C-terminus) with VP22 tegument protein; this interaction is necessary for the recruitment of VP22 to the Golgi and its packaging into virions.

Interacts (via C-terminus) with UL11 tegument protein (By similarity).

By similarity

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Region

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni63 – 88Interaction with gIBy similarityAdd BLAST26
Regioni237 – 382Fc-bindingBy similarityAdd BLAST146
Regioni472 – 497Interaction with VP22 and UL11By similarityAdd BLAST26
Regioni478 – 486AcidicBy similarity9

Motif

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes a short (usually not more than 20 amino acids) conserved sequence motif of biological significance.<p><a href='/help/motif' target='_top'>More...</a></p>Motifi465 – 468Internalization motifSequence analysis4
Motifi474 – 477Internalization motifSequence analysis4

Compositional bias

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes the position of regions of compositional bias within the protein and the particular amino acids that are over-represented within those regions.<p><a href='/help/compbias' target='_top'>More...</a></p>Compositional biasi163 – 216Pro-richAdd BLAST54

<p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Keywords - Domaini

Signal, Transmembrane, Transmembrane helix

Family and domain databases

Gene3D Structural and Functional Annotation of Protein Families

More...
Gene3Di
2.60.40.10, 1 hit

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR003404 Herpes_glycopE
IPR036179 Ig-like_dom_sf
IPR013783 Ig-like_fold

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF02480 Herpes_gE, 1 hit

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF48726 SSF48726, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is in its mature form or if it represents the precursor.<p><a href='/help/sequence_processing' target='_top'>More...</a></p>Sequence processingi: The displayed sequence is further processed into a mature form.

Q703F0-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MDRGAVVGFL LGVCVVSCLA GTPKTSWRRV SVGEDVSLLP APGPTGRGPT
60 70 80 90 100
QKLLWAVEPL DGCGPLHPSW XSLMPPKQVP ETVVDAACMR APVPLAMAYA
110 120 130 140 150
PPAPSATGGL RTDFVWQERA AVVNRSLVIY GVRETDSGLY TLSVGDIKDP
160 170 180 190 200
ARQVASVVLV VQPAPVPTPP PTPADYDEDD NDEGEGEDES LAGTPASGTP
210 220 230 240 250
RLPPPPAPPR SWPSAPEVSH VRGVTVRMET PEAILFSPGE AFSTNVSIHA
260 270 280 290 300
IAHDDQTYTM DVVWLRFDVP TSCAEMRIYE SCLYHPQLPE CLSPADAPCA
310 320 330 340 350
ASTWTSRLAV RSYAGCSRTN PPPRCSAEAH MEPVPGLAWQ AASVNLEFRD
360 370 380 390 400
ASPQHSGLYL CVVYVNDHIH AWGHITISTA AXYRNAVVEQ PLPQRGADLA
410 420 430 440 450
EPTHPHVGAP PHAPPTHGAL RLGAVMGAAL LLSVLGLSVW ACMTCWRRRA
460 470 480 490 500
WRAVKSRASG KGPTYIRVAD SELYADWSSD SEGERDQVPW LAPPERPDSP
510 520 530 540 550
STNGSGFEIL SPTAPSVYPR SDGHQSRRQL TTFGSGRPDR RYSQASDSSV

FW
Length:552
Mass (Da):59,313
Last modified:July 5, 2004 - v1
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:i8F689BF77BE07BB7
GO

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
AJ626469 Genomic DNA Translation: CAF24756.1
S62895 Genomic DNA Translation: AAB27080.1

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
AJ626469 Genomic DNA Translation: CAF24756.1
S62895 Genomic DNA Translation: AAB27080.1

3D structure databases

Database of comparative protein structure models

More...
ModBasei
Search...

Proteomic databases

PRIDEiQ703F0

Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Family and domain databases

Gene3Di2.60.40.10, 1 hit
InterProiView protein in InterPro
IPR003404 Herpes_glycopE
IPR036179 Ig-like_dom_sf
IPR013783 Ig-like_fold
PfamiView protein in Pfam
PF02480 Herpes_gE, 1 hit
SUPFAMiSSF48726 SSF48726, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiGE_HHV1F
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: Q703F0
Secondary accession number(s): Q86624
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: December 7, 2004
Last sequence update: July 5, 2004
Last modified: September 18, 2019
This is version 59 of the entry and version 1 of the sequence. See complete history.
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programViral Protein Annotation Program

<p>This section contains any relevant information that doesn’t fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Documents

  1. SIMILARITY comments
    Index of protein domains and families
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again