Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 171 (07 Oct 2020)
Sequence version 3 (23 Jan 2007)
Previous versions | rss
Help videoAdd a publicationFeedback
Protein

Genome polyprotein

Gene
N/A
Organism
Coxsackievirus B3 (strain Woodruff)
Status
Reviewed-Annotation score:

Annotation score:5 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the 'correct annotation' for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at protein leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the 'protein existence' evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Forms an icosahedral capsid of pseudo T=3 symmetry with capsid proteins VP2 and VP3 (By similarity). The capsid is 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome (By similarity). Capsid protein VP1 mainly forms the vertices of the capsid (By similarity). Capsid protein VP1 interacts with host cell receptors CD55 and CXADR to provide virion attachment to target host cells (By similarity). This attachment induces virion internalization (By similarity). Tyrosine kinases are probably involved in the entry process (By similarity). After binding to its receptor, the capsid undergoes conformational changes (By similarity). Capsid protein VP1 N-terminus (that contains an amphipathic alpha-helix) and capsid protein VP4 are externalized (By similarity). Together, they shape a pore in the host membrane through which viral genome is translocated to host cell cytoplasm (By similarity).By similarity
Forms an icosahedral capsid of pseudo T=3 symmetry with capsid proteins VP2 and VP3 (By similarity). The capsid is 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome (By similarity).By similarity
Forms an icosahedral capsid of pseudo T=3 symmetry with capsid proteins VP2 and VP3 (By similarity). The capsid is 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome (By similarity).By similarity
Lies on the inner surface of the capsid shell (By similarity). After binding to the host receptor, the capsid undergoes conformational changes (By similarity). Capsid protein VP4 is released, Capsid protein VP1 N-terminus is externalized, and together, they shape a pore in the host membrane through which the viral genome is translocated into the host cell cytoplasm (By similarity).By similarity
Component of immature procapsids, which is cleaved into capsid proteins VP4 and VP2 after maturation (By similarity). Allows the capsid to remain inactive before the maturation step (By similarity).By similarity
Cysteine protease that cleaves viral polyprotein and specific host proteins (By similarity). It is responsible for the autocatalytic cleavage between the P1 and P2 regions, which is the first cleavage occurring in the polyprotein (By similarity). Cleaves also the host translation initiation factor EIF4G1, in order to shut down the capped cellular mRNA translation (By similarity). Inhibits the host nucleus-cytoplasm protein and RNA trafficking by cleaving host members of the nuclear pores (By similarity). Counteracts stress granule formation probably by antagonizing its assembly or promoting its dissassembly (By similarity). Cleaves and inhibits host IFIH1/MDA5, thereby inhibiting the type-I IFN production and the establishment of the antiviral state (By similarity). Cleaves and inhibits host MAVS, thereby inhibiting the type-I IFN production and the establishment of the antiviral state (By similarity).By similarity
Plays an essential role in the virus replication cycle by acting as a viroporin. Creates a pore in the host reticulum endoplasmic and as a consequence releases Ca2+ in the cytoplasm of infected cell. In turn, high levels of cytoplasmic calcium may trigger membrane trafficking and transport of viral ER-associated proteins to viroplasms, sites of viral genome replication.By similarity
Induces and associates with structural rearrangements of intracellular membranes. Displays RNA-binding, nucleotide binding and NTPase activities. May play a role in virion morphogenesis and viral RNA encapsidation by interacting with the capsid protein VP3.By similarity
Localizes the viral replication complex to the surface of membranous vesicles. Together with protein 3CD binds the Cis-Active RNA Element (CRE) which is involved in RNA synthesis initiation. Acts as a cofactor to stimulate the activity of 3D polymerase, maybe through a nucleid acid chaperone activity.By similarity
Localizes the viral replication complex to the surface of membranous vesicles (By similarity). It inhibits host cell endoplasmic reticulum-to-Golgi apparatus transport and causes the disassembly of the Golgi complex, possibly through GBF1 interaction (By similarity). This would result in depletion of MHC, trail receptors and IFN receptors at the host cell surface (By similarity). Plays an essential role in viral RNA replication by recruiting ACBD3 and PI4KB at the viral replication sites, thereby allowing the formation of the rearranged membranous structures where viral replication takes place (By similarity).By similarity
Acts as a primer for viral RNA replication and remains covalently bound to viral genomic RNA. VPg is uridylylated prior to priming replication into VPg-pUpU (By similarity). The oriI viral genomic sequence may act as a template for this. The VPg-pUpU is then used as primer on the genomic RNA poly(A) by the RNA-dependent RNA polymerase to replicate the viral genome (By similarity). Following genome release from the infecting virion in the cytoplasm, the VPg-RNA linkage is probably removed by host TDP2 (By similarity). During the late stage of the replication cycle, host TDP2 is excluded from sites of viral RNA synthesis and encapsidation, allowing for the generation of progeny virions (By similarity).By similarity
Involved in the viral replication complex and viral polypeptide maturation. It exhibits protease activity with a specificity and catalytic efficiency that is different from protease 3C. Protein 3CD lacks polymerase activity. Protein 3CD binds to the 5'UTR of the viral genome.By similarity
Major viral protease that mediates proteolytic processing of the polyprotein (By similarity). Cleaves host EIF5B, contributing to host translation shutoff (By similarity). Cleaves also host PABPC1, contributing to host translation shutoff (By similarity). Cleaves and inhibits host DDX58/RIG-I, thereby inhibiting the type-I IFN production and the establishment of the antiviral state (By similarity). Cleaves and inhibits host MAVS, thereby inhibiting the type-I IFN production and the establishment of the antiviral state (By similarity). Cleaves and inhibits host TICAM1/TRIF, thereby inhibiting the type-I IFN production (By similarity).By similarity
Replicates the viral genomic RNA on the surface of intracellular membranes. May form linear arrays of subunits that propagate along a strong head-to-tail interaction called interface-I. Covalently attaches UMP to a tyrosine of VPg, which is used to prime RNA synthesis. The positive stranded RNA genome is first replicated at virus induced membranous vesicles, creating a dsRNA genomic replication form. This dsRNA is then used as template to synthesize positive stranded RNA genomes. ss+RNA genomes are either translated, replicated or encapsidated.By similarity

<p>This subsection of the <a href="http://www.uniprot.org/help/function%5Fsection">Function</a> section describes the catalytic activity of an enzyme, i.e. a chemical reaction that the enzyme catalyzes.<p><a href='/help/catalytic_activity' target='_top'>More...</a></p>Catalytic activityi

  • Selective cleavage of Tyr-|-Gly bond in the picornavirus polyprotein.By similarity EC:3.4.22.29
  • Selective cleavage of Gln-|-Gly bond in the poliovirus polyprotein. In other picornavirus reactions Glu may be substituted for Gln, and Ser or Thr for Gly.PROSITE-ProRule annotation EC:3.4.22.28

<p>This subsection of the 'Function' section provides information relevant to cofactors. A cofactor is any non-protein substance required for a protein to be catalytically active. Some cofactors are inorganic, such as the metal atoms zinc, iron, and copper in various oxidation states. Others, such as most vitamins, are organic.<p><a href='/help/cofactor' target='_top'>More...</a></p>Cofactori

RNA-directed RNA polymerase:
Mg2+By similarityNote: Binds 2 magnesium ions that constitute a dinuclear catalytic metal center (By similarity). The magnesium ions are not prebound but only present for catalysis (By similarity). Requires the presence of 3CDpro or 3CPro (By similarity).By similarity

<p>This subsection of the <a href="http://www.uniprot.org/help/function%5Fsection">Function</a> section describes regulatory mechanisms for enzymes, transporters or microbial transcription factors, and reports the components which regulate (by activation or inhibition) the reaction.<p><a href='/help/activity_regulation' target='_top'>More...</a></p>Activity regulationi

Replication or transcription is subject to high level of random mutations by the nucleotide analog ribavirin.By similarity

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/function%5Fsection">Function</a> section is used for enzymes and indicates the residues directly involved in catalysis.<p><a href='/help/act_site' target='_top'>More...</a></p>Active sitei872For protease 2A activityBy similarity1
Active sitei890For protease 2A activityBy similarity1
<p>This subsection of the <a href="http://www.uniprot.org/help/function%5Fsection">Function</a> section indicates at which position the protein binds a given metal ion. The nature of the metal is indicated in the 'Description' field.<p><a href='/help/metal' target='_top'>More...</a></p>Metal bindingi907Zinc; structuralBy similarity1
Metal bindingi909Zinc; structuralBy similarity1
Active sitei961For protease 2A activityBy similarity1
Metal bindingi967Zinc; structuralBy similarity1
Metal bindingi969Zinc; via pros nitrogen; structuralBy similarity1
<p>This subsection describes interesting single amino acid sites on the sequence that are not defined in any other subsection. This subsection can be displayed in different sections ('Function', 'PTM / Processing', 'Pathology and Biotech') according to its content.<p><a href='/help/site' target='_top'>More...</a></p>Sitei1125Involved in the interaction with host RTN3By similarity1
Metal bindingi1369ZincBy similarity1
Metal bindingi1381ZincBy similarity1
Metal bindingi1386ZincBy similarity1
Active sitei1580For protease 3C activityPROSITE-ProRule annotation1
Active sitei1611For protease 3C activityPROSITE-ProRule annotation1
Active sitei1687For protease 3C activityPROSITE-ProRule annotation1
Metal bindingi1956Magnesium 1; catalytic; for RdRp activityBy similarity1
Metal bindingi1956Magnesium 2; catalytic; for RdRp activityBy similarity1
Metal bindingi2052Magnesium 1; catalytic; for RdRp activityBy similarity1
Metal bindingi2052Magnesium 2; catalytic; for RdRp activityBy similarity1

Regions

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/function%5Fsection">Function</a> section specifies the position(s) and type(s) of zinc fingers within the protein.<p><a href='/help/zn_fing' target='_top'>More...</a></p>Zinc fingeri1369 – 1386C4-type; degenerateBy similarityAdd BLAST18

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionHelicase, Hydrolase, Ion channel, Nucleotidyltransferase, Protease, RNA-binding, RNA-directed RNA polymerase, Thiol protease, Transferase, Viral ion channel
Biological processActivation of host autophagy by virus, DNA replication, Eukaryotic host gene expression shutoff by virus, Eukaryotic host translation shutoff by virus, Host gene expression shutoff by virus, Host mRNA suppression by virus, Host-virus interaction, Inhibition of host innate immune response by virus, Inhibition of host MAVS by virus, Inhibition of host MDA5 by virus, Inhibition of host mRNA nuclear export by virus, Inhibition of host RIG-I by virus, Inhibition of host RLR pathway by virus, Ion transport, Pore-mediated penetration of viral genome into host cell, Transport, Viral attachment to host cell, Viral immunoevasion, Viral penetration into host cytoplasm, Viral RNA replication, Virus endocytosis by host, Virus entry into host cell
LigandATP-binding, Magnesium, Metal-binding, Nucleotide-binding, Zinc

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Genome polyprotein
Cleaved into the following 17 chains:
Alternative name(s):
VP4-VP2
Alternative name(s):
P1A
Virion protein 4
Alternative name(s):
P1B
Virion protein 2
Alternative name(s):
P1C
Virion protein 3
Alternative name(s):
P1D
Virion protein 1
Protease 2A (EC:3.4.22.29By similarity)
Short name:
P2A
Alternative name(s):
Picornain 2A
Protein 2A
Protein 2B
Short name:
P2B
Protein 2C (EC:3.6.1.15By similarity)
Short name:
P2C
Protein 3A
Short name:
P3A
Alternative name(s):
Protein 3B
Short name:
P3B
Protein 3CD (EC:3.4.22.28)
Protease 3CPROSITE-ProRule annotation (EC:3.4.22.28PROSITE-ProRule annotation)
Alternative name(s):
Picornain 3CPROSITE-ProRule annotation
Short name:
P3CPROSITE-ProRule annotation
RNA-directed RNA polymerasePROSITE-ProRule annotation (EC:2.7.7.48PROSITE-ProRule annotation)
Short name:
RdRp
Alternative name(s):
3D polymerase
Short name:
3Dpol
Protein 3D
Short name:
3D
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiCoxsackievirus B3 (strain Woodruff)
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the 'taxonomic identifier' or 'taxid'.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri103904 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiVirusesRiboviriaOrthornaviraePisuviricotaPisoniviricetesPicornaviralesPicornaviridaeEnterovirusEnterovirus B
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section only exists in viral entries and indicates the host(s) either as a specific organism or taxonomic group of organisms that are susceptible to be infected by a virus.<p><a href='/help/virus_host' target='_top'>More...</a></p>Virus hostiHomo sapiens (Human) [TaxID: 9606]
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
  • UP000007530 <p>A UniProt <a href="http://www.uniprot.org/manual/proteomes%5Fmanual">proteome</a> can consist of several components.<br></br>The component name refers to the genomic component encoding a set of proteins.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Genome

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Topology

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/subcellular%5Flocation%5Fsection">'Subcellular location'</a> section describes the subcellular compartment where each non-membrane region of a membrane-spanning protein is found.<p><a href='/help/topo_dom' target='_top'>More...</a></p>Topological domaini2 – 1495CytoplasmicSequence analysisAdd BLAST1494
<p>This subsection of the <a href="http://www.uniprot.org/help/subcellular%5Flocation%5Fsection">'Subcellular location'</a> section describes the extent of a region that is buried within a membrane, but does not cross it.<p><a href='/help/intramem' target='_top'>More...</a></p>Intramembranei1496 – 1511Sequence analysisAdd BLAST16
Topological domaini1512 – 2185CytoplasmicSequence analysisAdd BLAST674

GO - Cellular componenti

Keywords - Cellular componenti

Capsid protein, Host cytoplasm, Host cytoplasmic vesicle, Host membrane, Host nucleus, Membrane, T=pseudo3 icosahedral capsid protein, Virion

<p>This section provides information on the disease(s) and phenotype(s) associated with a protein.<p><a href='/help/pathology_and_biotech_section' target='_top'>More...</a></p>Pathology & Biotechi

Chemistry databases

Drug and drug target database

More...
DrugBanki
DB08231, Myristic acid

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm%5Fprocessing%5Fsection">PTM / Processing</a> section indicates that the initiator methionine is cleaved from the mature protein.<p><a href='/help/init_met' target='_top'>More...</a></p>Initiator methionineiRemoved; by hostBy similarity
<p>This subsection of the 'PTM / Processing' section describes the extent of a polypeptide chain in the mature protein following processing or proteolytic cleavage.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00004262812 – 2185Genome polyproteinAdd BLAST2184
ChainiPRO_00004262822 – 851P1Add BLAST850
ChainiPRO_00004262832 – 332Capsid protein VP0Add BLAST331
ChainiPRO_00004262842 – 69Capsid protein VP4Add BLAST68
ChainiPRO_000042628570 – 332Capsid protein VP2Add BLAST263
ChainiPRO_0000426286333 – 568Capsid protein VP3Add BLAST236
ChainiPRO_0000426287568 – 851Capsid protein VP1Add BLAST284
ChainiPRO_0000426288852 – 1429P2Add BLAST578
ChainiPRO_0000426289852 – 1001Protease 2AAdd BLAST150
ChainiPRO_00000395981002 – 1100Protein 2BAdd BLAST99
ChainiPRO_00000395991101 – 1429Protein 2CAdd BLAST329
ChainiPRO_00004262901430 – 2185P3Add BLAST756
ChainiPRO_00004262911430 – 1540Protein 3ABAdd BLAST111
ChainiPRO_00000396001430 – 1518Protein 3AAdd BLAST89
ChainiPRO_00004262921519 – 1540Viral protein genome-linkedAdd BLAST22
ChainiPRO_00004262931541 – 2185Protein 3CDAdd BLAST645
ChainiPRO_00004262941541 – 1723Protease 3CAdd BLAST183
ChainiPRO_00004262951724 – 2185RNA-directed RNA polymeraseAdd BLAST462

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm%5Fprocessing%5Fsection">PTM / Processing</a> section specifies the position(s) and the type of covalently attached lipid group(s).<p><a href='/help/lipid' target='_top'>More...</a></p>Lipidationi2N-myristoyl glycine; by host1 Publication1
<p>This subsection of the 'PTM / Processing' section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei1521O-(5'-phospho-RNA)-tyrosineBy similarity1

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm%5Fprocessing%5Fsection">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

Specific enzymatic cleavages in vivo by the viral proteases yield processing intermediates and the mature proteins.By similarity
Myristoylation is required for the formation of pentamers during virus assembly. Further assembly of 12 pentamers and a molecule of genomic RNA generates the provirion.By similarity
During virion maturation, immature virions are rendered infectious following cleavage of VP0 into VP4 and VP2. This maturation seems to be an autocatalytic event triggered by the presence of RNA in the capsid and it is followed by a conformational change infectious virion.By similarity
Myristoylation is required during RNA encapsidation and formation of the mature virus particle.By similarity
VPg is uridylylated by the polymerase into VPg-pUpU. This acts as a nucleotide-peptide primer for the genomic RNA replication.By similarity

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Sitei69 – 70Cleavage; by autolysisBy similarity2
Sitei332 – 333Cleavage; by protease 3CBy similarity2
Sitei851 – 852Cleavage; by autolysisBy similarity2
Sitei1001 – 1002Cleavage; by protease 3CBy similarity2
Sitei1100 – 1101Cleavage; by protease 3CBy similarity2
Sitei1429 – 1430Cleavage; by protease 3CBy similarity2
Sitei1518 – 1519Cleavage; by protease 3CBy similarity2
Sitei1540 – 1541Cleavage; by protease 3CBy similarity2
Sitei1723 – 1724Cleavage; by protease 3CBy similarity2

Keywords - PTMi

Autocatalytic cleavage, Covalent protein-RNA linkage, Lipoprotein, Myristate, Phosphoprotein

Proteomic databases

PRoteomics IDEntifications database

More...
PRIDEi
Q66282

PTM databases

iPTMnet integrated resource for PTMs in systems biology context

More...
iPTMneti
Q66282

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction%5Fsection">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function%5Fsection">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

Interacts with capsid protein VP1 and capsid protein VP3 to form heterotrimeric protomers.

By similarity

Interacts with capsid protein VP0, and capsid protein VP3 to form heterotrimeric protomers (By similarity). Five protomers subsequently associate to form pentamers which serve as building blocks for the capsid (By similarity).

Interacts with capsid protein VP2, capsid protein VP3 and capsid protein VP4 following cleavage of capsid protein VP0 (By similarity).

Interacts with host CD55 (By similarity).

Interacts with host CXADR (By similarity).

By similarity

Interacts with capsid protein VP1 and capsid protein VP3 in the mature capsid.

By similarity

Interacts with capsid protein VP0 and capsid protein VP1 to form heterotrimeric protomers (By similarity). Five protomers subsequently associate to form pentamers which serve as building blocks for the capsid (By similarity).

Interacts with capsid protein VP4 in the mature capsid (By similarity).

Interacts with protein 2C; this interaction may be important for virion morphogenesis (By similarity).

By similarity

Interacts with capsid protein VP1 and capsid protein VP3.

By similarity

Homodimer.

By similarity

Homohexamer; forms a hexameric ring structure with 6-fold symmetry characteristic of AAA+ ATPases (By similarity).

Interacts (via N-terminus) with host RTN3 (via reticulon domain); this interaction is important for viral replication (By similarity).

Interacts with capsid protein VP3; this interaction may be important for virion morphogenesis (By similarity).

By similarity

Interacts with protein 3CD.

By similarity

Homodimer (By similarity).

Interacts with host GBF1 (By similarity).

Interacts (via GOLD domain) with host ACBD3 (via GOLD domain); this interaction allows the formation of a viral protein 3A/ACBD3 heterotetramer with a 2:2 stoichiometry, which will stimulate the recruitment of host PI4KB in order to synthesize PI4P at the viral RNA replication sites (By similarity).

By similarity

Interacts with RNA-directed RNA polymerase.

By similarity

Interacts with host TICAM1 (via C-terminus).

By similarity

Interacts with protein 3AB and with RNA-directed RNA polymerase.

By similarity

Interacts with Viral protein genome-linked and with protein 3CD.

By similarity

Protein-protein interaction databases

Protein interaction database and analysis system

More...
IntActi
Q66282, 1 interactor

<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

Secondary structure

12185
Legend: HelixTurnBeta strandPDB Structure known for this area
Show more details

3D structure databases

SWISS-MODEL Repository - a database of annotated 3D protein structure models

More...
SMRi
Q66282

Database of comparative protein structure models

More...
ModBasei
Search...

Protein Data Bank in Europe - Knowledge Base

More...
PDBe-KBi
Search...

Miscellaneous databases

Relative evolutionary importance of amino acids within a protein sequence

More...
EvolutionaryTracei
Q66282

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Domains and Repeats

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/family%5Fand%5Fdomains%5Fsection">Family and Domains</a> section describes the position and type of a domain, which is defined as a specific combination of secondary structures organized into a characteristic three-dimensional structure or fold.<p><a href='/help/domain' target='_top'>More...</a></p>Domaini1205 – 1361SF3 helicasePROSITE-ProRule annotationAdd BLAST157
Domaini1541 – 1719Peptidase C3PROSITE-ProRule annotationAdd BLAST179
Domaini1950 – 2066RdRp catalyticPROSITE-ProRule annotationAdd BLAST117

Region

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the 'Family and Domains' section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni568 – 584Amphipatic alpha-helixSequence analysisAdd BLAST17
Regioni1101 – 1239OligomerizationBy similarityAdd BLAST139
Regioni1101 – 1173Membrane-bindingBy similarityAdd BLAST73
Regioni1122 – 1126RNA-bindingBy similarity5
Regioni1413 – 1420RNA-bindingBy similarity8
Regioni1424 – 1429OligomerizationBy similarity6
Regioni1430 – 1453DisorderedSequence analysisAdd BLAST24

<p>This subsection of the 'Family and domains' section provides general information on the biological role of a domain. The term 'domain' is intended here in its wide acceptation, it may be a structural domain, a transmembrane region or a functional domain. Several domains are described in this subsection.<p><a href='/help/domain_cc' target='_top'>More...</a></p>Domaini

The N-terminus has membrane-binding (By similarity). The N-terminus also displays RNA-binding properties (By similarity). The N-terminus is involved in oligomerization (By similarity). The central part contains an ATPase domain and a degenerate C4-type zinc-finger with only 3 cysteines (By similarity). The extreme C-terminus contains a region involved in oligomerization (By similarity).By similarity

<p>This subsection of the 'Family and domains' section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Belongs to the picornaviruses polyprotein family.Curated

Zinc finger

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Zinc fingeri1369 – 1386C4-type; degenerateBy similarityAdd BLAST18

Keywords - Domaini

Repeat, Zinc-finger

Family and domain databases

Conserved Domains Database

More...
CDDi
cd00205, rhv_like, 3 hits

Gene3D Structural and Functional Annotation of Protein Families

More...
Gene3Di
1.10.10.870, 1 hit
2.40.10.10, 4 hits
2.60.120.20, 3 hits
3.30.70.270, 1 hit
4.10.80.10, 1 hit

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR003593, AAA+_ATPase
IPR043502, DNA/RNA_pol_sf
IPR000605, Helicase_SF3_ssDNA/RNA_vir
IPR014759, Helicase_SF3_ssRNA_vir
IPR027417, P-loop_NTPase
IPR014838, P3A
IPR036203, P3A_soluble_dom
IPR000081, Peptidase_C3
IPR000199, Peptidase_C3A/C3B_picornavir
IPR009003, Peptidase_S1_PA
IPR043504, Peptidase_S1_PA_chymotrypsin
IPR003138, Pico_P1A
IPR036988, Pico_P1A_sf
IPR002527, Pico_P2B
IPR001676, Picornavirus_capsid
IPR043128, Rev_trsase/Diguanyl_cyclase
IPR033703, Rhv-like
IPR001205, RNA-dir_pol_C
IPR007094, RNA-dir_pol_PSvirus
IPR029053, Viral_coat

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF08727, P3A, 1 hit
PF00548, Peptidase_C3, 1 hit
PF02226, Pico_P1A, 1 hit
PF00947, Pico_P2A, 1 hit
PF01552, Pico_P2B, 1 hit
PF00680, RdRP_1, 1 hit
PF00073, Rhv, 3 hits
PF00910, RNA_helicase, 1 hit

Simple Modular Architecture Research Tool; a protein domain database

More...
SMARTi
View protein in SMART
SM00382, AAA, 1 hit

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF50494, SSF50494, 2 hits
SSF52540, SSF52540, 1 hit
SSF56672, SSF56672, 1 hit
SSF89043, SSF89043, 1 hit

PROSITE; a protein domain and family database

More...
PROSITEi
View protein in PROSITE
PS51874, PCV_3C_PRO, 1 hit
PS50507, RDRP_SSRNA_POS, 1 hit
PS51218, SF3_HELICASE_2, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence%5Flength">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences%5Fsection">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical%5Fand%5Fisoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences%5Fsection">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical%5Fand%5Fisoforms">canonical sequence</a> displayed by default in the entry is in its mature form or if it represents the precursor.<p><a href='/help/sequence_processing' target='_top'>More...</a></p>Sequence processingi: The displayed sequence is further processed into a mature form.

Q66282-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MGAQVSTQKT GAHETGLNAS GNSIIHYTNI NYYKDAASNS ANRQDFTQDP
60 70 80 90 100
SKFTEPVKDI MIKSLPALNS PTVEECGYSD RVRSITLGNS TITTQECANV
110 120 130 140 150
VVGYGVWPDY LKDSEATAED QPTQPDVATC RFYTLDSVQW QKTSPGWWWK
160 170 180 190 200
LPDALSNLGL FGQNMQYHYL GRTGYTIHVQ CNASKFHQGC LLVVCVPEAE
210 220 230 240 250
MGCATLNNTP SSAELLGGDS AKEFADKPVA SGSNKLVQRV VYNAGMGVGV
260 270 280 290 300
GNLTIFPHQW INLRTNNSAT IVMPYTNSVP MDNMFRHNNV TLMVIPFVPL
310 320 330 340 350
DYCPGSTTYV PITITIAPMC AEYNGLRLAG HQGLPTMNTP GSCQFLTSDD
360 370 380 390 400
FQSPSAMPQY DVTPEMRIPG EVKNLMEIAE VDSVVPVQNV GEKVNSMEAY
410 420 430 440 450
QIPVRSNEGS GTQVFGFPLQ PGYSSVFSRT LLGEILNYYT HWSGSIKLTF
460 470 480 490 500
MFCGSAMATG KFLLAYSPPG AGAPTKRVDA MLGTHVVWDV GLQSSCVLCI
510 520 530 540 550
PWISQTHYRY VASDEYTAGG FITCWYQTNI VVPADAQSSC YIMCFVSACN
560 570 580 590 600
DFSVRLLKDT PFISQQNFFQ GPVEDAITAA IGRVADTVGT GPTNSEAIPA
610 620 630 640 650
LTAAETGHTS QVVPSDTMQT RHVKNYHSRS ESTIENFLCR SACVYFTEYE
660 670 680 690 700
NSGAKRYAEW VITPRQAAQL RRKLEFFTYV RFDLELTFVI TSTQQPSTTQ
710 720 730 740 750
NQDAQILTHQ IMYVPPGGPV PDKVDSYVWQ TSTNPSVFWT EGNAPPRMSV
760 770 780 790 800
PFLSIGNAYS NFYDGWSEFS RNGVYGINTL NNMGTLYARH VNAGSTGPIK
810 820 830 840 850
STIRIYFKPK HVKAWIPRPP RLCQYEKAKN VNFQPSGVTT TRQSITTMTN
860 870 880 890 900
TGAFGQQSGA VYVGNYRVVN RHLATSADWQ NCVWENYNRD LLVSTTTAHG
910 920 930 940 950
CDIIARCRCT TGVYFCASKN KHYPISFEGP GIVEVQESEY YPRRYQSHVL
960 970 980 990 1000
LAAGFSEPGD CGGILRCEHG VIGIVTMGGE GVVGFADIRD LLWLEDDAME
1010 1020 1030 1040 1050
QGVKDYVEQL GNAFGSGFTN QICEQVNLLK ESLVGQDSIL EKSLKALVKI
1060 1070 1080 1090 1100
ISALVIVVRN HDDLITVTAT LALIGCTSSP WRWLKQKVSQ YYGIPMAERQ
1110 1120 1130 1140 1150
NNGWLKKFTE MTNACKGMEW IAIKIQKFIE WLKVKILPEV REKHEFLNRL
1160 1170 1180 1190 1200
KQLPLLESQI ATIEQSAPSQ SDQEQLFSNV QYFAHYCRKY APLYASEAKR
1210 1220 1230 1240 1250
VFSLEKKMSN YIQFKSKCRI EPVCLLLHGS PGAGKSVATN LIGRSLAEKL
1260 1270 1280 1290 1300
NSSVYSLPPD PDHFDGYKQQ AVVIMDDLCQ KPDGKDVSLF CQMVSSVDFV
1310 1320 1330 1340 1350
PPMAALEEKG ILFTSPFVLA STNAGSINAP TVSDSRALAR RFHFDMNIEV
1360 1370 1380 1390 1400
ISMYSQNGKI NMPMSVKTCD EECCPVNFKK CCPLVCGKAI QFIDRRTQVR
1410 1420 1430 1440 1450
YSLDMLVTEM FREYNHRHSV GATLEALFQG PPVYREIKIS VAPETPPPPR
1460 1470 1480 1490 1500
IADLLKSVDS EAVREYCKEK GWLVPEVNST LQIEKHVSRA FICLQAITTF
1510 1520 1530 1540 1550
VSVAGIIYII YKLFAGFQGA YTGIPNQKPK VPTLRQAKVQ GPAFEFAVAM
1560 1570 1580 1590 1600
MKRNSSTVKT EYGEFTMLGI YDRWAVLPRH AKPGPTILMN DQEVGVLDAK
1610 1620 1630 1640 1650
ELVDKDGTNL ELTLLKLNRN EKFRDIRGFL AKEEVEVNEA VLAINTSKFP
1660 1670 1680 1690 1700
NMYIPVGQVT DYGFLNLGGT PTKRMLMYNF PTRAGQCGGV LMSTGKVLGI
1710 1720 1730 1740 1750
HVGGNGHQGF SAALLKHYFN DEQGEIEFIE SSKEAGFPII NTPSKTKLEP
1760 1770 1780 1790 1800
SVFHQVFEGD KEPAVLRNGD PRLKVNFEEA IFSKYIGNVN THVDEYMMEA
1810 1820 1830 1840 1850
VDHYAGQLAT LDISTEPMKL EDAVYGTEGL EALDLTTSAG YPYVALGIKK
1860 1870 1880 1890 1900
RDILSKKTRD LTKLKECMDK YGLNLPMVTY VKDELRSAEK VAKGKSRLIE
1910 1920 1930 1940 1950
ASSLNDSVAM RQTFGNLYKT FHLNPGVVTG SAVGCDPDLF WSKIPVMLDG
1960 1970 1980 1990 2000
HLIAFDYSGY DASLSPVWFA CLKLLLEKLG YSHKETNYID YLCNSHHLYR
2010 2020 2030 2040 2050
DKHYFVRGGM PSGCSGTSIF NSMINNIIIR TLMLKVYKGI DLDQFRMIAY
2060 2070 2080 2090 2100
GDDVIASYPW PIDASLLAEA GKDYGLIMTP ADKGECFNEV TWTNVTFLKR
2110 2120 2130 2140 2150
YFRADEQYPF LVHPVMPMKD IHESIRWTKD PKNTQDHVRS LCLLAWHNGE
2160 2170 2180
HEYEEFIRKI RSVPVGRCLT LPAFSTIRRK WLDSF
Length:2,185
Mass (Da):243,682
Last modified:January 23, 2007 - v3
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:iFD93A677904252FA
GO

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
U57056 Genomic RNA Translation: AAB02228.1

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

<p>This subsection of the <a href="http://www.uniprot.org/manual/cross%5Freferences%5Fsection">Cross-references</a> section provides links to various web resources that are relevant for a specific protein.<p><a href='/help/web_resource' target='_top'>More...</a></p>Web resourcesi

Virus Particle ExploreR db

Icosahedral capsid structure

Virus Particle ExploreR db

Icosahedral capsid structure

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
U57056 Genomic RNA Translation: AAB02228.1

3D structure databases

Select the link destinations:

Protein Data Bank Europe

More...
PDBei

Protein Data Bank RCSB

More...
RCSB PDBi

Protein Data Bank Japan

More...
PDBji
Links Updated
PDB entryMethodResolution (Å)ChainPositionsPDBsum
1COVX-ray3.501571-851[»]
270-332[»]
3333-570[»]
42-69[»]
1JEWelectron microscopy22.001571-851[»]
270-332[»]
3333-570[»]
42-69[»]
3JD7electron microscopy3.901571-851[»]
270-332[»]
3333-570[»]
42-69[»]
SMRiQ66282
ModBaseiSearch...
PDBe-KBiSearch...

Protein-protein interaction databases

IntActiQ66282, 1 interactor

Chemistry databases

DrugBankiDB08231, Myristic acid

PTM databases

iPTMnetiQ66282

Proteomic databases

PRIDEiQ66282

Miscellaneous databases

EvolutionaryTraceiQ66282

Family and domain databases

CDDicd00205, rhv_like, 3 hits
Gene3Di1.10.10.870, 1 hit
2.40.10.10, 4 hits
2.60.120.20, 3 hits
3.30.70.270, 1 hit
4.10.80.10, 1 hit
InterProiView protein in InterPro
IPR003593, AAA+_ATPase
IPR043502, DNA/RNA_pol_sf
IPR000605, Helicase_SF3_ssDNA/RNA_vir
IPR014759, Helicase_SF3_ssRNA_vir
IPR027417, P-loop_NTPase
IPR014838, P3A
IPR036203, P3A_soluble_dom
IPR000081, Peptidase_C3
IPR000199, Peptidase_C3A/C3B_picornavir
IPR009003, Peptidase_S1_PA
IPR043504, Peptidase_S1_PA_chymotrypsin
IPR003138, Pico_P1A
IPR036988, Pico_P1A_sf
IPR002527, Pico_P2B
IPR001676, Picornavirus_capsid
IPR043128, Rev_trsase/Diguanyl_cyclase
IPR033703, Rhv-like
IPR001205, RNA-dir_pol_C
IPR007094, RNA-dir_pol_PSvirus
IPR029053, Viral_coat
PfamiView protein in Pfam
PF08727, P3A, 1 hit
PF00548, Peptidase_C3, 1 hit
PF02226, Pico_P1A, 1 hit
PF00947, Pico_P2A, 1 hit
PF01552, Pico_P2B, 1 hit
PF00680, RdRP_1, 1 hit
PF00073, Rhv, 3 hits
PF00910, RNA_helicase, 1 hit
SMARTiView protein in SMART
SM00382, AAA, 1 hit
SUPFAMiSSF50494, SSF50494, 2 hits
SSF52540, SSF52540, 1 hit
SSF56672, SSF56672, 1 hit
SSF89043, SSF89043, 1 hit
PROSITEiView protein in PROSITE
PS51874, PCV_3C_PRO, 1 hit
PS50507, RDRP_SSRNA_POS, 1 hit
PS51218, SF3_HELICASE_2, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the 'Entry information' section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiPOLG_CXB3W
<p>This subsection of the 'Entry information' section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called 'Primary (citable) accession number'.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: Q66282
<p>This subsection of the 'Entry information' section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification ('Last modified'). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical%5Fand%5Fisoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: July 15, 1999
Last sequence update: January 23, 2007
Last modified: October 7, 2020
This is version 171 of the entry and version 3 of the sequence. See complete history.
<p>This subsection of the 'Entry information' section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programViral Protein Annotation Program

<p>This section contains any relevant information that doesn't fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

3D-structure

Documents

  1. PDB cross-references
    Index of Protein Data Bank (PDB) cross-references
  2. SIMILARITY comments
    Index of protein domains and families
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again