Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 145 (12 Aug 2020)
Sequence version 2 (05 Apr 2011)
Previous versions | rss
Help videoAdd a publicationFeedback
Protein

Eukaryotic translation initiation factor 2-alpha kinase 1

Gene

Eif2ak1

Organism
Rattus norvegicus (Rat)
Status
Reviewed-Annotation score:

Annotation score:5 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the 'correct annotation' for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at protein leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the 'protein existence' evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) in response to various stress conditions. Key activator of the integrated stress response (ISR) required for adaptation to various stress, such as heme deficiency, oxidative stress, osmotic shock, mitochondrial dysfunction and heat shock. EIF2S1/eIF-2-alpha phosphorylation in response to stress converts EIF2S1/eIF-2-alpha in a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4, and hence allowing ATF4-mediated reprogramming. Acts as a key sensor of heme-deficiency: in normal conditions, binds hemin via a cysteine thiolate and histidine nitrogenous coordination, leading to inhibit the protein kinase activity. This binding occurs with moderate affinity, allowing it to sense the heme concentration within the cell: heme depletion relieves inhibition and stimulates kinase activity, activating the ISR. Thanks to this unique heme-sensing capacity, plays a crucial role to shut off protein synthesis during acute heme-deficient conditions. In red blood cells (RBCs), controls hemoglobin synthesis ensuring a coordinated regulation of the synthesis of its heme and globin moieties. It thereby plays an essential protective role for RBC survival in anemias of iron deficiency. Similarly, in hepatocytes, involved in heme-mediated translational control of CYP2B and CYP3A and possibly other hepatic P450 cytochromes. May also regulate endoplasmic reticulum (ER) stress during acute heme-deficient conditions (By similarity). Also activates the ISR in response to mitochondrial dysfunction: HRI/EIF2AK1 protein kinase activity is activated upon binding to the processed form of DELE1 (S-DELE1), thereby promoting the ATF4-mediated reprogramming (By similarity).By similarity

<p>This subsection of the <a href="http://www.uniprot.org/help/function%5Fsection">Function</a> section describes the catalytic activity of an enzyme, i.e. a chemical reaction that the enzyme catalyzes.<p><a href='/help/catalytic_activity' target='_top'>More...</a></p>Catalytic activityi

<p>This subsection of the <a href="http://www.uniprot.org/help/function%5Fsection">Function</a> section describes regulatory mechanisms for enzymes, transporters or microbial transcription factors, and reports the components which regulate (by activation or inhibition) the reaction.<p><a href='/help/activity_regulation' target='_top'>More...</a></p>Activity regulationi

In normal conditions, the protein kinase activity is inhibited; inhibition is relieved by various stress conditions (By similarity). Inhibited by heme: in presence of heme, forms a disulfide-linked inactive homodimer (By similarity). Heme depletion relieves inhibition and stimulates kinase activity by autophosphorylation. Inhibited by the heme metabolites biliverdin and bilirubin. Induced by oxidative stress generated by arsenite treatment. Binding of nitric oxide (NO) to the heme iron in the N-terminal heme-binding domain activates the kinase activity, while binding of carbon monoxide (CO) suppresses kinase activity (By similarity). Protein kinase activity is also activated upon binding to the processed form of DELE1 (S-DELE1): interaction with S-DELE1 takes place in response to mitochondrial stress and triggers the integrated stress response (ISR) (By similarity).By similarity

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection describes interesting single amino acid sites on the sequence that are not defined in any other subsection. This subsection can be displayed in different sections ('Function', 'PTM / Processing', 'Pathology and Biotech') according to its content.<p><a href='/help/site' target='_top'>More...</a></p>Sitei80Heme-bindingBy similarity1
<p>This subsection of the <a href="http://www.uniprot.org/help/function%5Fsection">Function</a> section describes the interaction between a single amino acid and another chemical entity. Priority is given to the annotation of physiological ligands.<p><a href='/help/binding' target='_top'>More...</a></p>Binding sitei196ATPPROSITE-ProRule annotation1
<p>This subsection of the <a href="http://www.uniprot.org/help/function%5Fsection">Function</a> section is used for enzymes and indicates the residues directly involved in catalysis.<p><a href='/help/act_site' target='_top'>More...</a></p>Active sitei440Proton acceptorPROSITE-ProRule annotation1

Regions

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/function%5Fsection">Function</a> section describes a region in the protein which binds nucleotide phosphates. It always involves more than one amino acid and includes all residues involved in nucleotide-binding.<p><a href='/help/np_bind' target='_top'>More...</a></p>Nucleotide bindingi173 – 181ATPPROSITE-ProRule annotation9

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionKinase, Protein synthesis inhibitor, Serine/threonine-protein kinase, Transferase
LigandATP-binding, Nucleotide-binding

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Eukaryotic translation initiation factor 2-alpha kinase 1Curated (EC:2.7.11.1By similarity)
Alternative name(s):
Heme-controlled repressor
Short name:
HCR
Heme-regulated eukaryotic initiation factor eIF-2-alpha kinaseBy similarity
Heme-regulated inhibitor1 Publication
Hemin-sensitive initiation factor 2-alpha kinase1 Publication
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: 'Name', 'Synonyms', 'Ordered locus names' and 'ORF names'.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:Eif2ak1Imported
Synonyms:Hri1 Publication
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiRattus norvegicus (Rat)
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the 'taxonomic identifier' or 'taxid'.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri10116 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresGliresRodentiaMyomorphaMuroideaMuridaeMurinaeRattus
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
  • UP000002494 <p>A UniProt <a href="http://www.uniprot.org/manual/proteomes%5Fmanual">proteome</a> can consist of several components.<br></br>The component name refers to the genomic component encoding a set of proteins.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Chromosome 12
  • UP000234681 Componentsi: Chromosome 12, Unassembled WGS sequence

Organism-specific databases

Rat genome database

More...
RGDi
70883, Eif2ak1

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Keywords - Cellular componenti

Cytoplasm

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the 'PTM / Processing' section describes the extent of a polypeptide chain in the mature protein following processing or proteolytic cleavage.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00000859441 – 620Eukaryotic translation initiation factor 2-alpha kinase 1Add BLAST620

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the 'PTM / Processing' section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei283PhosphothreonineCombined sources1
Modified residuei484Phosphothreonine; by autocatalysisBy similarity1
Modified residuei486Phosphothreonine; by autocatalysisBy similarity1
Modified residuei491PhosphothreonineBy similarity1

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm%5Fprocessing%5Fsection">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

Activated by autophosphorylation; phosphorylated predominantly on serine and threonine residues, but also on tyrosine residues. Autophosphorylation at Thr-486 is required for kinase activation. The active autophosphorylated form apparently is largely refractory to cellular heme fluctuations.By similarity

Keywords - PTMi

Disulfide bond, Phosphoprotein

Proteomic databases

PaxDb, a database of protein abundance averages across all three domains of life

More...
PaxDbi
Q63185

PRoteomics IDEntifications database

More...
PRIDEi
Q63185

PTM databases

iPTMnet integrated resource for PTMs in systems biology context

More...
iPTMneti
Q63185

Comprehensive resource for the study of protein post-translational modifications (PTMs) in human, mouse and rat.

More...
PhosphoSitePlusi
Q63185

<p>This section provides information on the expression of a gene at the mRNA or protein level in cells or in tissues of multicellular organisms.<p><a href='/help/expression_section' target='_top'>More...</a></p>Expressioni

<p>This subsection of the 'Expression' section provides information on the expression of a gene at the mRNA or protein level in cells or in tissues of multicellular organisms. By default, the information is derived from experiments at the mRNA level, unless specified 'at protein level'.<br></br>Examples: <a href="http://www.uniprot.org/uniprot/P92958#expression">P92958</a>, <a href="http://www.uniprot.org/uniprot/Q8TDN4#expression">Q8TDN4</a>, <a href="http://www.uniprot.org/uniprot/O14734#expression">O14734</a><p><a href='/help/tissue_specificity' target='_top'>More...</a></p>Tissue specificityi

Expressed predominantly in erythroid cells. At much lower levels, expressed in hepatocytes (at protein level).1 Publication

<p>This subsection of the 'Expression' section reports the experimentally proven effects of inducers and repressors (usually chemical compounds or environmental factors) on the level of protein (or mRNA) expression (up-regulation, down-regulation, constitutive expression).<p><a href='/help/induction' target='_top'>More...</a></p>Inductioni

Induced by various cytochrome P450 inducers, including phenobarbital, dexamethasone, rifampicin and barbituric acid in its autophosphorylated state. Carbamazepine has no effect.1 Publication

Gene expression databases

Bgee dataBase for Gene Expression Evolution

More...
Bgeei
ENSRNOG00000001050, Expressed in spleen and 21 other tissues

ExpressionAtlas, Differential and Baseline Expression

More...
ExpressionAtlasi
Q63185, baseline and differential

Genevisible search portal to normalized and curated expression data from Genevestigator

More...
Genevisiblei
Q63185, RN

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction%5Fsection">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function%5Fsection">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

Synthesized in an inactive form that binds to the N-terminal domain of CDC37. Has to be associated with a multiprotein complex containing Hsp90, CDC37 and PPP5C for maturation and activation by autophosphorylation. The phosphatase PPP5C modulates this activation (By similarity). Homodimer; homodimerizes in presence of heme, forming a disulfide-linked inactive homodimer (By similarity).

Interacts with DELE1; binds to the processed form of DELE1 (S-DELE1) in response to mitochondrial stress, leading to activate its protein kinase activity and trigger the integrated stress response (ISR) (By similarity).

By similarity

GO - Molecular functioni

Protein-protein interaction databases

STRING: functional protein association networks

More...
STRINGi
10116.ENSRNOP00000001392

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Domains and Repeats

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/family%5Fand%5Fdomains%5Fsection">Family and Domains</a> section describes the position and type of a domain, which is defined as a specific combination of secondary structures organized into a characteristic three-dimensional structure or fold.<p><a href='/help/domain' target='_top'>More...</a></p>Domaini167 – 581Protein kinasePROSITE-ProRule annotationAdd BLAST415
<p>This subsection of the 'Family and Domains' section indicates the positions and types of repeated sequence motifs or repeated domains within the protein.<p><a href='/help/repeat' target='_top'>More...</a></p>Repeati408 – 413HRM 16
Repeati550 – 555HRM 26

<p>This subsection of the 'Family and domains' section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Belongs to the protein kinase superfamily. Ser/Thr protein kinase family. GCN2 subfamily.PROSITE-ProRule annotation

Keywords - Domaini

Repeat

Phylogenomic databases

evolutionary genealogy of genes: Non-supervised Orthologous Groups

More...
eggNOGi
KOG1035, Eukaryota

Ensembl GeneTree

More...
GeneTreei
ENSGT00940000157605

InParanoid: Eukaryotic Ortholog Groups

More...
InParanoidi
Q63185

KEGG Orthology (KO)

More...
KOi
K16194

Database of Orthologous Groups

More...
OrthoDBi
64059at2759

Database for complete collections of gene phylogenies

More...
PhylomeDBi
Q63185

TreeFam database of animal gene trees

More...
TreeFami
TF329383

Family and domain databases

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR011009, Kinase-like_dom_sf
IPR000719, Prot_kinase_dom
IPR017441, Protein_kinase_ATP_BS
IPR008271, Ser/Thr_kinase_AS

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF00069, Pkinase, 2 hits

Simple Modular Architecture Research Tool; a protein domain database

More...
SMARTi
View protein in SMART
SM00220, S_TKc, 1 hit

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF56112, SSF56112, 1 hit

PROSITE; a protein domain and family database

More...
PROSITEi
View protein in PROSITE
PS00107, PROTEIN_KINASE_ATP, 1 hit
PS50011, PROTEIN_KINASE_DOM, 1 hit
PS00108, PROTEIN_KINASE_ST, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence%5Flength">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequence (1+)i

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences%5Fsection">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical%5Fand%5Fisoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

This entry has 1 described isoform and 2 potential isoforms that are computationally mapped.Show allAlign All

Q63185-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MLGGGSVDGE RDTDDDAAGA VAAPPAIDFP AEVSDPKYDE SDVPAELQVF
60 70 80 90 100
KEPLQQPTFP FLVANQLLLV SLLEHLSHVH EPNPLHSKQV FKLLCQTFIK
110 120 130 140 150
MGLLSSFTCS DEFSSLRLHH NRAITHLMRS AKERVRQDPC QDNSYMQKIR
160 170 180 190 200
SREIALEAQT SRYLNEFEEL AILGKGGYGR VYKVRNKLDG QHYAIKKILI
210 220 230 240 250
KSATKTDCMK VLREVKVLAG LQHPNIVGYH TAWIEHVHVL QPQDRVPIQL
260 270 280 290 300
PSLEVLSEHE GDRNQGGVKD NESSSSIIFA ELTPEKENPL AESDVKNENN
310 320 330 340 350
NLVSYRANLV IRSSSESESS IELQEDGLNE SPLRPVVKHQ LPLGHSSDVE
360 370 380 390 400
GNFTSTDESS EDNLNLLGQT EARYHLMLHI QMQLCELSLW DWIAERNNRS
410 420 430 440 450
RECVDEAACP YVMASVATKI FQELVEGVFY IHNMGIVHRD LKPRNIFLHG
460 470 480 490 500
PDQQVKIGDF GLACADIIQK SADWTNRNGK GTPTHTSRVG TCLYASPEQL
510 520 530 540 550
EGSEYDAKSD MYSLGVILLE LFQPFGTEME RATVLTGVRT GRIPESLSKR
560 570 580 590 600
CPVQAKYIQL LTGRNAAQRP SALQLLQSEL FQTTGNVNLT LQMKIMEQEK
610 620
EIEELKKQLS LLSQDKGLKR
Length:620
Mass (Da):69,586
Last modified:April 5, 2011 - v2
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:iA4E56A2FBFCCEDDC
GO

<p>In eukaryotic reference proteomes, unreviewed entries that are likely to belong to the same gene are computationally mapped, based on gene identifiers from Ensembl, EnsemblGenomes and model organism databases.<p><a href='/help/gene_centric_isoform_mapping' target='_top'>More...</a></p>Computationally mapped potential isoform sequencesi

There are 2 potential isoforms mapped to this entry.BLASTAlignShow allAdd to basket
EntryEntry nameProtein names
Gene namesLengthAnnotation
A0A0G2K9K9A0A0G2K9K9_RAT
Eukaryotic translation initiation f...
Eif2ak1
645Annotation score:

Annotation score:1 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the 'correct annotation' for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
A0A0U1RRS4A0A0U1RRS4_RAT
Eukaryotic translation initiation f...
Eif2ak1
67Annotation score:

Annotation score:1 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the 'correct annotation' for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>

Experimental Info

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the 'Sequence' section reports difference(s) between the canonical sequence (displayed by default in the entry) and the different sequence submissions merged in the entry. These various submissions may originate from different sequencing projects, different types of experiments, or different biological samples. Sequence conflicts are usually of unknown origin.<p><a href='/help/conflict' target='_top'>More...</a></p>Sequence conflicti398N → K in AAA18255 (PubMed:7908290).Curated1
Sequence conflicti402E → K in AAA18255 (PubMed:7908290).Curated1

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
L27707 mRNA Translation: AAA18255.1
CH474012 Genomic DNA Translation: EDL89653.1
BC081838 mRNA Translation: AAH81838.1

Protein sequence database of the Protein Information Resource

More...
PIRi
A53731

NCBI Reference Sequences

More...
RefSeqi
NP_037355.1, NM_013223.1

Genome annotation databases

Ensembl eukaryotic genome annotation project

More...
Ensembli
ENSRNOT00000001392; ENSRNOP00000001392; ENSRNOG00000001050

Database of genes from NCBI RefSeq genomes

More...
GeneIDi
27137

KEGG: Kyoto Encyclopedia of Genes and Genomes

More...
KEGGi
rno:27137

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
L27707 mRNA Translation: AAA18255.1
CH474012 Genomic DNA Translation: EDL89653.1
BC081838 mRNA Translation: AAH81838.1
PIRiA53731
RefSeqiNP_037355.1, NM_013223.1

3D structure databases

Database of comparative protein structure models

More...
ModBasei
Search...

SWISS-MODEL Interactive Workspace

More...
SWISS-MODEL-Workspacei
Submit a new modelling project...

Protein-protein interaction databases

STRINGi10116.ENSRNOP00000001392

PTM databases

iPTMnetiQ63185
PhosphoSitePlusiQ63185

Proteomic databases

PaxDbiQ63185
PRIDEiQ63185

Genome annotation databases

EnsembliENSRNOT00000001392; ENSRNOP00000001392; ENSRNOG00000001050
GeneIDi27137
KEGGirno:27137

Organism-specific databases

Comparative Toxicogenomics Database

More...
CTDi
27102
RGDi70883, Eif2ak1

Phylogenomic databases

eggNOGiKOG1035, Eukaryota
GeneTreeiENSGT00940000157605
InParanoidiQ63185
KOiK16194
OrthoDBi64059at2759
PhylomeDBiQ63185
TreeFamiTF329383

Miscellaneous databases

Protein Ontology

More...
PROi
PR:Q63185

Gene expression databases

BgeeiENSRNOG00000001050, Expressed in spleen and 21 other tissues
ExpressionAtlasiQ63185, baseline and differential
GenevisibleiQ63185, RN

Family and domain databases

InterProiView protein in InterPro
IPR011009, Kinase-like_dom_sf
IPR000719, Prot_kinase_dom
IPR017441, Protein_kinase_ATP_BS
IPR008271, Ser/Thr_kinase_AS
PfamiView protein in Pfam
PF00069, Pkinase, 2 hits
SMARTiView protein in SMART
SM00220, S_TKc, 1 hit
SUPFAMiSSF56112, SSF56112, 1 hit
PROSITEiView protein in PROSITE
PS00107, PROTEIN_KINASE_ATP, 1 hit
PS50011, PROTEIN_KINASE_DOM, 1 hit
PS00108, PROTEIN_KINASE_ST, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the 'Entry information' section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiE2AK1_RAT
<p>This subsection of the 'Entry information' section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called 'Primary (citable) accession number'.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: Q63185
Secondary accession number(s): Q642C7
<p>This subsection of the 'Entry information' section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification ('Last modified'). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical%5Fand%5Fisoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: May 30, 2000
Last sequence update: April 5, 2011
Last modified: August 12, 2020
This is version 145 of the entry and version 2 of the sequence. See complete history.
<p>This subsection of the 'Entry information' section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

<p>This section contains any relevant information that doesn't fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

Reference proteome

Documents

  1. SIMILARITY comments
    Index of protein domains and families
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again