Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 178 (16 Oct 2019)
Sequence version 2 (01 Nov 1997)
Previous versions | rss
Help videoAdd a publicationFeedback
Protein

Mitogen-activated protein kinase 10

Gene

Mapk10

Organism
Mus musculus (Mouse)
Status
Reviewed-Annotation score:

Annotation score:5 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at protein leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Serine/threonine-protein kinase involved in various processes such as neuronal proliferation, differentiation, migration and programmed cell death. Extracellular stimuli such as proinflammatory cytokines or physical stress stimulate the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. In this cascade, two dual specificity kinases MAP2K4/MKK4 and MAP2K7/MKK7 phosphorylate and activate MAPK10/JNK3. In turn, MAPK10/JNK3 phosphorylates a number of transcription factors, primarily components of AP-1 such as JUN and ATF2 and thus regulates AP-1 transcriptional activity. Plays regulatory roles in the signaling pathways during neuronal apoptosis. Phosphorylates the neuronal microtubule regulator STMN2. Acts in the regulation of the amyloid-beta precursor protein/APP signaling during neuronal differentiation by phosphorylating APP. Participates also in neurite growth in spiral ganglion neurons. Phosphorylates the CLOCK-ARNTL/BMAL1 heterodimer and plays a role in the photic regulation of the circadian clock (PubMed:22441692).4 Publications

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes the catalytic activity of an enzyme, i.e. a chemical reaction that the enzyme catalyzes.<p><a href='/help/catalytic_activity' target='_top'>More...</a></p>Catalytic activityi

<p>This subsection of the ‘Function’ section provides information relevant to cofactors. A cofactor is any non-protein substance required for a protein to be catalytically active. Some cofactors are inorganic, such as the metal atoms zinc, iron, and copper in various oxidation states. Others, such as most vitamins, are organic.<p><a href='/help/cofactor' target='_top'>More...</a></p>Cofactori

Mg2+1 Publication

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes regulatory mechanisms for enzymes, transporters or microbial transcription factors, and reports the components which regulate (by activation or inhibition) the reaction.<p><a href='/help/activity_regulation' target='_top'>More...</a></p>Activity regulationi

Activated by threonine and tyrosine phosphorylation by two dual specificity kinases, MAP2K4 and MAP2K7. MAP2K7 phosphorylates MAPK10 on Thr-221 causing a conformational change and a large increase in Vmax for the enzyme. MAP2K4 then phosphorylates Tyr-223 resulting in a further increase in Vmax. Inhibited by dual specificity phosphatases, such as DUSP1 (By similarity). Inhibited by HDAC9.By similarity1 Publication

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes the interaction between a single amino acid and another chemical entity. Priority is given to the annotation of physiological ligands.<p><a href='/help/binding' target='_top'>More...</a></p>Binding sitei93ATPPROSITE-ProRule annotation1
<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section is used for enzymes and indicates the residues directly involved in catalysis.<p><a href='/help/act_site' target='_top'>More...</a></p>Active sitei189Proton acceptorPROSITE-ProRule annotation1

Regions

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes a region in the protein which binds nucleotide phosphates. It always involves more than one amino acid and includes all residues involved in nucleotide-binding.<p><a href='/help/np_bind' target='_top'>More...</a></p>Nucleotide bindingi70 – 78ATPPROSITE-ProRule annotation9

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionKinase, Serine/threonine-protein kinase, Transferase
Biological processBiological rhythms
LigandATP-binding, Nucleotide-binding

Enzyme and pathway databases

BRENDA Comprehensive Enzyme Information System

More...
BRENDAi
2.7.11.24 3474

Reactome - a knowledgebase of biological pathways and processes

More...
Reactomei
R-MMU-2559580 Oxidative Stress Induced Senescence
R-MMU-2871796 FCERI mediated MAPK activation
R-MMU-450321 JNK (c-Jun kinases) phosphorylation and activation mediated by activated human TAK1
R-MMU-450341 Activation of the AP-1 family of transcription factors

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Mitogen-activated protein kinase 10 (EC:2.7.11.24)
Short name:
MAP kinase 10
Short name:
MAPK 10
Alternative name(s):
MAP kinase p49 3F12
Stress-activated protein kinase JNK3
c-Jun N-terminal kinase 3
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:Mapk10
Synonyms:Jnk3, Prkm10, Serk2
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiMus musculus (Mouse)
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri10090 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresGliresRodentiaMyomorphaMuroideaMuridaeMurinaeMusMus
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
  • UP000000589 <p>A UniProt <a href="http://www.uniprot.org/manual/proteomes_manual">proteome</a> can consist of several components. <br></br>The component name refers to the genomic component encoding a set of proteins.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Unplaced

Organism-specific databases

Mouse genome database (MGD) from Mouse Genome Informatics (MGI)

More...
MGIi
MGI:1346863 Mapk10

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte & Seán O’Donoghue; Source: COMPARTMENTS

Keywords - Cellular componenti

Cytoplasm, Membrane, Mitochondrion, Nucleus

<p>This section provides information on the disease(s) and phenotype(s) associated with a protein.<p><a href='/help/pathology_and_biotech_section' target='_top'>More...</a></p>Pathology & Biotechi

Chemistry databases

ChEMBL database of bioactive drug-like small molecules

More...
ChEMBLi
CHEMBL3885603

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00001862781 – 464Mitogen-activated protein kinase 10Add BLAST464

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei221Phosphothreonine; by MAP2K7By similarity1
Modified residuei223Phosphotyrosine; by MAP2K4By similarity1
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section specifies the position(s) and the type of covalently attached lipid group(s).<p><a href='/help/lipid' target='_top'>More...</a></p>Lipidationi462S-palmitoyl cysteineBy similarity1
Lipidationi463S-palmitoyl cysteineBy similarity1

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

Dually phosphorylated on Thr-221 and Tyr-223 by MAP2K4 and MAP2K7, which activates the enzyme. MAP2K7 shows a strong preference for Thr-221 while MAP2K4 phosphorylates Tyr-223 preferentially. Weakly autophosphorylated on threonine and tyrosine residues in vitro (By similarity).By similarity
Palmitoylation regulates subcellular location and axonal development.By similarity

Keywords - PTMi

Lipoprotein, Palmitate, Phosphoprotein

Proteomic databases

PaxDb, a database of protein abundance averages across all three domains of life

More...
PaxDbi
Q61831

PeptideAtlas

More...
PeptideAtlasi
Q61831

PRoteomics IDEntifications database

More...
PRIDEi
Q61831

PTM databases

iPTMnet integrated resource for PTMs in systems biology context

More...
iPTMneti
Q61831

Comprehensive resource for the study of protein post-translational modifications (PTMs) in human, mouse and rat.

More...
PhosphoSitePlusi
Q61831

<p>This section provides information on the expression of a gene at the mRNA or protein level in cells or in tissues of multicellular organisms.<p><a href='/help/expression_section' target='_top'>More...</a></p>Expressioni

<p>This subsection of the ‘Expression’ section provides information on the expression of a gene at the mRNA or protein level in cells or in tissues of multicellular organisms. By default, the information is derived from experiments at the mRNA level, unless specified ‘at protein level’. <br></br>Examples: <a href="http://www.uniprot.org/uniprot/P92958#expression">P92958</a>, <a href="http://www.uniprot.org/uniprot/Q8TDN4#expression">Q8TDN4</a>, <a href="http://www.uniprot.org/uniprot/O14734#expression">O14734</a><p><a href='/help/tissue_specificity' target='_top'>More...</a></p>Tissue specificityi

Brain (at protein level). Expressed specifically in neurons of the hippocampus, cortex, cerebellum, brainstem, and spinal cord. Seems to be also found in testis, and very weakly in the heart.1 Publication

<p>This subsection of the ‘Expression’ section provides information on the expression of the gene product at various stages of a cell, tissue or organism development. By default, the information is derived from experiments at the mRNA level, unless specified ‘at the protein level’.<p><a href='/help/developmental_stage' target='_top'>More...</a></p>Developmental stagei

Expression begins in day 11.5 dpc embryos, and is localized in both the rostral spinal cord and rhombencephalon. In 12.5-13 dpc embryos, it is found throughout the telencephalon. By day 17.5, JNK3 is also expressed in neurons of dorsal root and sensory ganglia and at lower levels in neurons of the myenteric plexus and the developing heart.

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

Binds to at least four scaffolding proteins, MAPK8IP1/JIP1, MAPK8IP2/JIP2, MAPK8IP3/JIP3/JSAP1 and SPAG9/MAPK8IP4/JIP4. These proteins also bind other components of the JNK signaling pathway (By similarity).

Interacts with HDAC9 and MAPKBP1.

Interacts with ARRB2; the interaction enhances MAPK10 activation by MAP3K5 (By similarity).

Interacts with SARM1.

By similarity3 Publications

<p>This subsection of the '<a href="http://www.uniprot.org/help/interaction_section%27">Interaction</a> section provides information about binary protein-protein interactions. The data presented in this section are a quality-filtered subset of binary interactions automatically derived from the <a href="http://www.ebi.ac.uk/intact/">IntAct database</a>. It is updated on a monthly basis. Each binary interaction is displayed on a separate line.<p><a href='/help/binary_interactions' target='_top'>More...</a></p>Binary interactionsi

WithEntry#Exp.IntActNotes
Mapk8ip3Q9ESN9-24EBI-400741,EBI-9549291

Protein-protein interaction databases

The Biological General Repository for Interaction Datasets (BioGrid)

More...
BioGridi
204967, 5 interactors

The Eukaryotic Linear Motif resource for Functional Sites in Proteins

More...
ELMi
Q61831

Protein interaction database and analysis system

More...
IntActi
Q61831, 3 interactors

Molecular INTeraction database

More...
MINTi
Q61831

STRING: functional protein association networks

More...
STRINGi
10090.ENSMUSP00000108468

<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

3D structure databases

SWISS-MODEL Repository - a database of annotated 3D protein structure models

More...
SMRi
Q61831

Database of comparative protein structure models

More...
ModBasei
Search...

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Domains and Repeats

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/family_and_domains_section">Family and Domains</a> section describes the position and type of a domain, which is defined as a specific combination of secondary structures organized into a characteristic three-dimensional structure or fold.<p><a href='/help/domain' target='_top'>More...</a></p>Domaini64 – 359Protein kinasePROSITE-ProRule annotationAdd BLAST296

Motif

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes a short (usually not more than 20 amino acids) conserved sequence motif of biological significance.<p><a href='/help/motif' target='_top'>More...</a></p>Motifi221 – 223TXY3

<p>This subsection of the ‘Family and domains’ section provides general information on the biological role of a domain. The term ‘domain’ is intended here in its wide acceptation, it may be a structural domain, a transmembrane region or a functional domain. Several domains are described in this subsection.<p><a href='/help/domain_cc' target='_top'>More...</a></p>Domaini

The TXY motif contains the threonine and tyrosine residues whose phosphorylation activates the MAP kinases.

<p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Phylogenomic databases

evolutionary genealogy of genes: Non-supervised Orthologous Groups

More...
eggNOGi
KOG0665 Eukaryota
ENOG410XSHI LUCA

The HOGENOM Database of Homologous Genes from Fully Sequenced Organisms

More...
HOGENOMi
HOG000233024

InParanoid: Eukaryotic Ortholog Groups

More...
InParanoidi
Q61831

KEGG Orthology (KO)

More...
KOi
K04440

Database of Orthologous Groups

More...
OrthoDBi
741207at2759

Database for complete collections of gene phylogenies

More...
PhylomeDBi
Q61831

Family and domain databases

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR011009 Kinase-like_dom_sf
IPR003527 MAP_kinase_CS
IPR008351 MAPK_JNK
IPR000719 Prot_kinase_dom
IPR008271 Ser/Thr_kinase_AS

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF00069 Pkinase, 1 hit

Protein Motif fingerprint database; a protein domain database

More...
PRINTSi
PR01772 JNKMAPKINASE

Simple Modular Architecture Research Tool; a protein domain database

More...
SMARTi
View protein in SMART
SM00220 S_TKc, 1 hit

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF56112 SSF56112, 1 hit

PROSITE; a protein domain and family database

More...
PROSITEi
View protein in PROSITE
PS01351 MAPK, 1 hit
PS50011 PROTEIN_KINASE_DOM, 1 hit
PS00108 PROTEIN_KINASE_ST, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequences (2+)i

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

This entry describes 2 <p>This subsection of the ‘Sequence’ section lists the alternative protein sequences (isoforms) that can be generated from the same gene by a single or by the combination of up to four biological events (alternative promoter usage, alternative splicing, alternative initiation and ribosomal frameshifting). Additionally, this section gives relevant information on each alternative protein isoform.<p><a href='/help/alternative_products' target='_top'>More...</a></p> isoformsi produced by alternative splicing. AlignAdd to basket

This entry has 2 described isoforms and 7 potential isoforms that are computationally mapped.Show allAlign All

Isoform Alpha-2 (identifier: Q61831-1) [UniParc]FASTAAdd to basket

This isoform has been chosen as the <div> <p><b>What is the canonical sequence?</b><p><a href='/help/canonical_and_isoforms' target='_top'>More...</a></p>canonicali sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.

« Hide
        10         20         30         40         50
MSLHFLYYCS EPTLDVKIAF CQGFDKHVDV SSIAKHYNMS KSKVDNQFYS
60 70 80 90 100
VEVGDSTFTV LKRYQNLKPI GSGAQGIVCA AYDAVLDRNV AIKKLSRPFQ
110 120 130 140 150
NQTHAKRAYR ELVLMKCVNH KNIISLLNVF TPQKTLEEFQ DVYLVMELMD
160 170 180 190 200
ANLCQVIQME LDHERMSYLL YQMLCGIKHL HSAGIIHRDL KPSNIVVKSD
210 220 230 240 250
CTLKILDFGL ARTAGTSFMM TPYVVTRYYR APEVILGMGY KENVDIWSVG
260 270 280 290 300
CIMGEMVRHK ILFPGRSYID QWNKVIEQLG TPCPEFMKKL QPTVRNYVEN
310 320 330 340 350
RPKYAGLTFP KLFPDSLFPA DSEHNKLKAS QARDLLSKML VIDPVKRISV
360 370 380 390 400
DDALQHPYIN VWYDPAEVEA PPPQIYDKQL DEREHTIEEW KELIYKEVMN
410 420 430 440 450
SEEKTKNGVV KSQPSPSGAA VNSSESLPPS SAVNDISSMS TDQTLASDTD
460
SSLEASAGPL GCCR
Length:464
Mass (Da):52,532
Last modified:November 1, 1997 - v2
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:i4313335AC2E9D2E6
GO
Isoform Alpha-1 (identifier: Q61831-2) [UniParc]FASTAAdd to basket

The sequence of this isoform differs from the canonical sequence as follows:
     418-464: GAAVNSSESLPPSSAVNDISSMSTDQTLASDTDSSLEASAGPLGCCR → AQVQQ

Note: No experimental confirmation available.
Show »
Length:422
Mass (Da):48,517
Checksum:iBECC560711189590
GO

<p>In eukaryotic reference proteomes, unreviewed entries that are likely to belong to the same gene are computationally mapped, based on gene identifiers from Ensembl, EnsemblGenomes and model organism databases.<p><a href='/help/gene_centric_isoform_mapping' target='_top'>More...</a></p>Computationally mapped potential isoform sequencesi

There are 7 potential isoforms mapped to this entry.BLASTAlignShow allAdd to basket
EntryEntry nameProtein names
Gene namesLengthAnnotation
Q8C9D4Q8C9D4_MOUSE
Mitogen-activated protein kinase
Mapk10 JNK3A2
464Annotation score:

Annotation score:3 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
Q80W80Q80W80_MOUSE
Mitogen-activated protein kinase
Mapk10 JNK3B2
464Annotation score:

Annotation score:2 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
E9QN59E9QN59_MOUSE
Mitogen-activated protein kinase
Mapk10
494Annotation score:

Annotation score:2 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
Q3TQZ7Q3TQZ7_MOUSE
Mitogen-activated protein kinase
Mapk10
418Annotation score:

Annotation score:2 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
A0A0G2JG69A0A0G2JG69_MOUSE
Mitogen-activated protein kinase
Mapk10
178Annotation score:

Annotation score:2 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
A0A0G2JGL2A0A0G2JGL2_MOUSE
Mitogen-activated protein kinase
Mapk10
252Annotation score:

Annotation score:2 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
A0A0G2JEJ8A0A0G2JEJ8_MOUSE
Mitogen-activated protein kinase 10
Mapk10
173Annotation score:

Annotation score:1 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>

Experimental Info

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Sequence’ section reports difference(s) between the canonical sequence (displayed by default in the entry) and the different sequence submissions merged in the entry. These various submissions may originate from different sequencing projects, different types of experiments, or different biological samples. Sequence conflicts are usually of unknown origin.<p><a href='/help/conflict' target='_top'>More...</a></p>Sequence conflicti267S → D in BAA85877 (PubMed:10523642).Curated1
Sequence conflicti345V → A in BAA85877 (PubMed:10523642).Curated1
Sequence conflicti412S → G in BAA85877 (PubMed:10523642).Curated1
Sequence conflicti418 – 423GAAVNS → AQVQQ (PubMed:10523642).Curated6

Alternative sequence

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Sequence’ section describes the sequence of naturally occurring alternative protein isoform(s). The changes in the amino acid sequence may be due to alternative splicing, alternative promoter usage, alternative initiation, or ribosomal frameshifting.<p><a href='/help/var_seq' target='_top'>More...</a></p>Alternative sequenceiVSP_004840418 – 464GAAVN…LGCCR → AQVQQ in isoform Alpha-1. CuratedAdd BLAST47

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
L35236 mRNA Translation: AAB37741.1
AB005665 mRNA Translation: BAA85877.1

NCBI Reference Sequences

More...
RefSeqi
NP_001297615.1, NM_001310686.2
XP_017176379.1, XM_017320890.1
XP_017176380.1, XM_017320891.1

Genome annotation databases

Database of genes from NCBI RefSeq genomes

More...
GeneIDi
26414

KEGG: Kyoto Encyclopedia of Genes and Genomes

More...
KEGGi
mmu:26414

UCSC genome browser

More...
UCSCi
uc008yjg.1 mouse [Q61831-1]

Keywords - Coding sequence diversityi

Alternative splicing

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
L35236 mRNA Translation: AAB37741.1
AB005665 mRNA Translation: BAA85877.1
RefSeqiNP_001297615.1, NM_001310686.2
XP_017176379.1, XM_017320890.1
XP_017176380.1, XM_017320891.1

3D structure databases

SMRiQ61831
ModBaseiSearch...

Protein-protein interaction databases

BioGridi204967, 5 interactors
ELMiQ61831
IntActiQ61831, 3 interactors
MINTiQ61831
STRINGi10090.ENSMUSP00000108468

Chemistry databases

ChEMBLiCHEMBL3885603

PTM databases

iPTMnetiQ61831
PhosphoSitePlusiQ61831

Proteomic databases

PaxDbiQ61831
PeptideAtlasiQ61831
PRIDEiQ61831

Genome annotation databases

GeneIDi26414
KEGGimmu:26414
UCSCiuc008yjg.1 mouse [Q61831-1]

Organism-specific databases

Comparative Toxicogenomics Database

More...
CTDi
5602
MGIiMGI:1346863 Mapk10

Phylogenomic databases

eggNOGiKOG0665 Eukaryota
ENOG410XSHI LUCA
HOGENOMiHOG000233024
InParanoidiQ61831
KOiK04440
OrthoDBi741207at2759
PhylomeDBiQ61831

Enzyme and pathway databases

BRENDAi2.7.11.24 3474
ReactomeiR-MMU-2559580 Oxidative Stress Induced Senescence
R-MMU-2871796 FCERI mediated MAPK activation
R-MMU-450321 JNK (c-Jun kinases) phosphorylation and activation mediated by activated human TAK1
R-MMU-450341 Activation of the AP-1 family of transcription factors

Miscellaneous databases

ChiTaRS: a database of human, mouse and fruit fly chimeric transcripts and RNA-sequencing data

More...
ChiTaRSi
Mapk10 mouse

Protein Ontology

More...
PROi
PR:Q61831

The Stanford Online Universal Resource for Clones and ESTs

More...
SOURCEi
Search...

Family and domain databases

InterProiView protein in InterPro
IPR011009 Kinase-like_dom_sf
IPR003527 MAP_kinase_CS
IPR008351 MAPK_JNK
IPR000719 Prot_kinase_dom
IPR008271 Ser/Thr_kinase_AS
PfamiView protein in Pfam
PF00069 Pkinase, 1 hit
PRINTSiPR01772 JNKMAPKINASE
SMARTiView protein in SMART
SM00220 S_TKc, 1 hit
SUPFAMiSSF56112 SSF56112, 1 hit
PROSITEiView protein in PROSITE
PS01351 MAPK, 1 hit
PS50011 PROTEIN_KINASE_DOM, 1 hit
PS00108 PROTEIN_KINASE_ST, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiMK10_MOUSE
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: Q61831
Secondary accession number(s): Q9R0U6
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: November 1, 1997
Last sequence update: November 1, 1997
Last modified: October 16, 2019
This is version 178 of the entry and version 2 of the sequence. See complete history.
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

<p>This section contains any relevant information that doesn’t fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

Complete proteome, Reference proteome

Documents

  1. SIMILARITY comments
    Index of protein domains and families
  2. Human and mouse protein kinases
    Human and mouse protein kinases: classification and index
  3. MGD cross-references
    Mouse Genome Database (MGD) cross-references in UniProtKB/Swiss-Prot
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again