Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 121 (08 May 2019)
Sequence version 1 (07 Dec 2004)
Previous versions | rss
Other tutorials and videosHelp videoFeedback
Protein

Dual specificity tyrosine-phosphorylation-regulated kinase 2

Gene

Dyrk2

Organism
Mus musculus (Mouse)
Status
Reviewed-Annotation score:

Annotation score:5 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at transcript leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Serine/threonine-protein kinase involved in the regulation of the mitotic cell cycle, cell proliferation, apoptosis, organization of the cytoskeleton and neurite outgrowth. Functions in part via its role in ubiquitin-dependent proteasomal protein degradation. Functions downstream of ATM and phosphorylates p53/TP53 at 'Ser-46', and thereby contributes to the induction of apoptosis in response to DNA damage. Phosphorylates NFATC1, and thereby inhibits its accumulation in the nucleus and its transcription factor activity. Phosphorylates EIF2B5 at 'Ser-544', enabling its subsequent phosphorylation and inhibition by GSK3B. Likewise, phosphorylation of NFATC1, CRMP2/DPYSL2 and CRMP4/DPYSL3 promotes their subsequent phosphorylation by GSK3B. May play a general role in the priming of GSK3 substrates. Inactivates GYS1 by phosphorylation at 'Ser-641', and potentially also a second phosphorylation site, thus regulating glycogen synthesis. Mediates EDVP E3 ligase complex formation and is required for the phosphorylation and subsequent degradation of KATNA1. Phosphorylates TERT at 'Ser-457', promoting TERT ubiquitination by the EDVP complex. Phosphorylates SIAH2, and thereby increases its ubiquitin ligase activity. Promotes the proteasomal degradation of MYC and JUN, and thereby regulates progress through the mitotic cell cycle and cell proliferation. Promotes proteasomal degradation of GLI2 and GLI3, and thereby plays a role in smoothened and sonic hedgehog signaling. Phosphorylates CRMP2/DPYSL2, CRMP4/DPYSL3, DCX, EIF2B5, EIF4EBP1, GLI2, GLI3, GYS1, JUN, MDM2, MYC, NFATC1, p53/TP53, TAU/MAPT and KATNA1. Can phosphorylate histone H1, histone H3 and histone H2B (in vitro). Can phosphorylate CARHSP1 (in vitro) (By similarity). Plays a role in cytoskeleton organization and neurite outgrowth via its phosphorylation of DCX.By similarity1 Publication

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes the catalytic activity of an enzyme, i.e. a chemical reaction that the enzyme catalyzes.<p><a href='/help/catalytic_activity' target='_top'>More...</a></p>Catalytic activityi

<p>This subsection of the ‘Function’ section provides information relevant to cofactors. A cofactor is any non-protein substance required for a protein to be catalytically active. Some cofactors are inorganic, such as the metal atoms zinc, iron, and copper in various oxidation states. Others, such as most vitamins, are organic.<p><a href='/help/cofactor' target='_top'>More...</a></p>Cofactori

Protein has several cofactor binding sites:

<p>This subsection of the ‘Function’ section describes regulatory mechanisms for enzymes, transporters or microbial transcription factors, and reports the components which regulate (by activation or inhibition) the reaction.<p><a href='/help/activity_regulation' target='_top'>More...</a></p>Activity regulationi

Activated by autophosphorylation on the second tyrosine residue in the Tyr-X-Tyr motif in the activation loop.By similarity

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Function’ section describes the interaction between a single amino acid and another chemical entity. Priority is given to the annotation of physiological ligands.<p><a href='/help/binding' target='_top'>More...</a></p>Binding sitei249ATPPROSITE-ProRule annotationBy similarity1
<p>This subsection of the ‘Function’ section is used for enzymes and indicates the residues directly involved in catalysis.<p><a href='/help/act_site' target='_top'>More...</a></p>Active sitei346Proton acceptorPROSITE-ProRule annotationBy similarity1

Regions

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Function’ section describes a region in the protein which binds nucleotide phosphates. It always involves more than one amino acid and includes all residues involved in nucleotide-binding.<p><a href='/help/np_bind' target='_top'>More...</a></p>Nucleotide bindingi226 – 234ATPPROSITE-ProRule annotationBy similarity9
Nucleotide bindingi299 – 302ATPPROSITE-ProRule annotation4

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionKinase, Serine/threonine-protein kinase, Transferase, Tyrosine-protein kinase
Biological processApoptosis, Ubl conjugation pathway
LigandATP-binding, Magnesium, Manganese, Nucleotide-binding

Enzyme and pathway databases

Reactome - a knowledgebase of biological pathways and processes

More...
Reactomei
R-MMU-6804756 Regulation of TP53 Activity through Phosphorylation

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Dual specificity tyrosine-phosphorylation-regulated kinase 2 (EC:2.7.12.1)
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:Dyrk2Imported
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiMus musculus (Mouse)
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri10090 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresGliresRodentiaMyomorphaMuroideaMuridaeMurinaeMusMus
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
  • UP000000589 <p>A UniProt <a href="http://www.uniprot.org/manual/proteomes_manual">proteome</a> can consist of several components. <br></br>The component name refers to the genomic component encoding a set of proteins.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Chromosome 10

Organism-specific databases

Mouse genome database (MGD) from Mouse Genome Informatics (MGI)

More...
MGIi
MGI:1330301 Dyrk2

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte & Seán O’Donoghue; Source: COMPARTMENTS

Keywords - Cellular componenti

Cytoplasm, Nucleus

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00002912651 – 599Dual specificity tyrosine-phosphorylation-regulated kinase 2Add BLAST599

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei30PhosphoserineBy similarity1
Modified residuei104Phosphothreonine; by ATMBy similarity1
Modified residuei379Phosphothreonine; by MAP3K10By similarity1
Modified residuei380Phosphotyrosine; by autocatalysisBy similarity1
Modified residuei440Phosphoserine; by ATMBy similarity1
Modified residuei447Phosphoserine; by MAP3K10By similarity1

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

Autophosphorylates cotranslationally on the second tyrosine residue in the Tyr-X-Tyr motif in the activation loop, but once mature, does not have any protein tyrosine kinase activity. Phosphorylated at Thr-104 and Ser-440 by ATM in response to genotoxic stress.
Under normal conditions, polyubiquitinated in the nucleus by MDM2, leading to its proteasomal degradation. Phosphorylation on Thr-104 and Ser-440 by ATM in response to genotoxic stress disrupts MDM2 binding and prevents MDM2-mediated ubiquitination and subsequent proteasomal degradation. Polyubiquitinated by SIAH2, leading to its proteasomal degradation. Polyubiquitinated by SIAH2 occurs under normal conditions, and is enhanced in response to hypoxia.

Keywords - PTMi

Phosphoprotein, Ubl conjugation

Proteomic databases

MaxQB - The MaxQuant DataBase

More...
MaxQBi
Q5U4C9

PaxDb, a database of protein abundance averages across all three domains of life

More...
PaxDbi
Q5U4C9

PeptideAtlas

More...
PeptideAtlasi
Q5U4C9

PRoteomics IDEntifications database

More...
PRIDEi
Q5U4C9

PTM databases

iPTMnet integrated resource for PTMs in systems biology context

More...
iPTMneti
Q5U4C9

Comprehensive resource for the study of protein post-translational modifications (PTMs) in human, mouse and rat.

More...
PhosphoSitePlusi
Q5U4C9

<p>This section provides information on the expression of a gene at the mRNA or protein level in cells or in tissues of multicellular organisms.<p><a href='/help/expression_section' target='_top'>More...</a></p>Expressioni

Gene expression databases

Bgee dataBase for Gene Expression Evolution

More...
Bgeei
ENSMUSG00000028630 Expressed in 154 organ(s), highest expression level in heart

Genevisible search portal to normalized and curated expression data from Genevestigator

More...
Genevisiblei
Q5U4C9 MM

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

Component of an E3 ligase complex containing DYRK2, EDD/UBR5, DDB1 and DCAF1 (EDVP complex). Interacts directly with EDD/UBR5, DDB1 and DCAF1. Interacts with SIAH2 and MDM2. Interacts with MAP3K10 and NFATC1. May also interact with CCNL2 (By similarity).By similarity

Protein-protein interaction databases

STRING: functional protein association networks

More...
STRINGi
10090.ENSMUSP00000004281

<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

3D structure databases

SWISS-MODEL Repository - a database of annotated 3D protein structure models

More...
SMRi
Q5U4C9

Database of comparative protein structure models

More...
ModBasei
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Domains and Repeats

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/family_and_domains_section">Family and Domains</a> section describes the position and type of a domain, which is defined as a specific combination of secondary structures organized into a characteristic three-dimensional structure or fold.<p><a href='/help/domain' target='_top'>More...</a></p>Domaini220 – 533Protein kinasePROSITE-ProRule annotationAdd BLAST314

Motif

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes a short (usually not more than 20 amino acids) conserved sequence motif of biological significance.<p><a href='/help/motif' target='_top'>More...</a></p>Motifi187 – 189Nuclear localization signalBy similarity3

<p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Phylogenomic databases

evolutionary genealogy of genes: Non-supervised Orthologous Groups

More...
eggNOGi
KOG0667 Eukaryota
ENOG410XPET LUCA

Ensembl GeneTree

More...
GeneTreei
ENSGT00940000158113

The HOGENOM Database of Homologous Genes from Fully Sequenced Organisms

More...
HOGENOMi
HOG000220863

InParanoid: Eukaryotic Ortholog Groups

More...
InParanoidi
Q5U4C9

KEGG Orthology (KO)

More...
KOi
K18669

Identification of Orthologs from Complete Genome Data

More...
OMAi
KLTTFEH

Database of Orthologous Groups

More...
OrthoDBi
870358at2759

Database for complete collections of gene phylogenies

More...
PhylomeDBi
Q5U4C9

TreeFam database of animal gene trees

More...
TreeFami
TF314624

Family and domain databases

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR011009 Kinase-like_dom_sf
IPR000719 Prot_kinase_dom
IPR017441 Protein_kinase_ATP_BS
IPR008271 Ser/Thr_kinase_AS

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF00069 Pkinase, 1 hit

Simple Modular Architecture Research Tool; a protein domain database

More...
SMARTi
View protein in SMART
SM00220 S_TKc, 1 hit

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF56112 SSF56112, 1 hit

PROSITE; a protein domain and family database

More...
PROSITEi
View protein in PROSITE
PS00107 PROTEIN_KINASE_ATP, 1 hit
PS50011 PROTEIN_KINASE_DOM, 1 hit
PS00108 PROTEIN_KINASE_ST, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>.<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

Q5U4C9-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MLTRKPSAAA PAAYPTGRGG DTAVRQLQAS PGIGAGAPRS GVGTGPPSPI
60 70 80 90 100
ALPPLRASNA TTTAHTIGGS KHTMNDHLHL NSHGQIQVQQ LFEDNSNKRT
110 120 130 140 150
VLTTQPNGLT TVGKTGLPGV PERQLESIHR RQGSSTSLKS MEGMGKVKAS
160 170 180 190 200
PMTPEQAMKQ YMQKLTAFEH HEIFSYPEIY FLGPNAKKRQ GMTGGPNNGG
210 220 230 240 250
YDDDQGSYVQ VPHDHVAYRY EVLKVIGKGS FGQVVKAYDH KVHQHVALKM
260 270 280 290 300
VRNEKRFHRQ AAEEIRILEH LRKQDKDNTM NVIHMLENFT FRNHICMTFE
310 320 330 340 350
LLSMNLYELI KKNKFQGFSL PLVRKFAHSI LQCLDALHKN RIIHCDLKPE
360 370 380 390 400
NILLKQQGRS SIKVIDFGSS CYEHQRVYTY IQSRFYRAPE VILGARYGMP
410 420 430 440 450
IDMWSLGCIL AELLTGYPLL PGEDEGDQLA CMIELLGMPS QKLLDASKRA
460 470 480 490 500
KNFVSSKGYP RYCTVTTLSD GSVVLNGGRS RRGKLRGPPE SREWGNALKG
510 520 530 540 550
CDDPLFLDFL KQCLEWDPAV RMTPGQALRH PWLRRRLPKP PTGEKTAVKR
560 570 580 590
VTESTGAITS ISKLPPPSSS ASKLRTNLAQ MTDANGNIQQ RTVLPKLVS
Length:599
Mass (Da):66,556
Last modified:December 7, 2004 - v1
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:i2378D39A5E1E8056
GO

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
BC085145 mRNA Translation: AAH85145.1

The Consensus CDS (CCDS) project

More...
CCDSi
CCDS24201.1

NCBI Reference Sequences

More...
RefSeqi
NP_001014412.1, NM_001014390.2

Genome annotation databases

Ensembl eukaryotic genome annotation project

More...
Ensembli
ENSMUST00000004281; ENSMUSP00000004281; ENSMUSG00000028630

Database of genes from NCBI RefSeq genomes

More...
GeneIDi
69181

KEGG: Kyoto Encyclopedia of Genes and Genomes

More...
KEGGi
mmu:69181

UCSC genome browser

More...
UCSCi
uc007hea.1 mouse

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
BC085145 mRNA Translation: AAH85145.1
CCDSiCCDS24201.1
RefSeqiNP_001014412.1, NM_001014390.2

3D structure databases

SMRiQ5U4C9
ModBaseiSearch...
MobiDBiSearch...

Protein-protein interaction databases

STRINGi10090.ENSMUSP00000004281

PTM databases

iPTMnetiQ5U4C9
PhosphoSitePlusiQ5U4C9

Proteomic databases

MaxQBiQ5U4C9
PaxDbiQ5U4C9
PeptideAtlasiQ5U4C9
PRIDEiQ5U4C9

Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Genome annotation databases

EnsembliENSMUST00000004281; ENSMUSP00000004281; ENSMUSG00000028630
GeneIDi69181
KEGGimmu:69181
UCSCiuc007hea.1 mouse

Organism-specific databases

Comparative Toxicogenomics Database

More...
CTDi
8445
MGIiMGI:1330301 Dyrk2

Phylogenomic databases

eggNOGiKOG0667 Eukaryota
ENOG410XPET LUCA
GeneTreeiENSGT00940000158113
HOGENOMiHOG000220863
InParanoidiQ5U4C9
KOiK18669
OMAiKLTTFEH
OrthoDBi870358at2759
PhylomeDBiQ5U4C9
TreeFamiTF314624

Enzyme and pathway databases

ReactomeiR-MMU-6804756 Regulation of TP53 Activity through Phosphorylation

Miscellaneous databases

Protein Ontology

More...
PROi
PR:Q5U4C9

The Stanford Online Universal Resource for Clones and ESTs

More...
SOURCEi
Search...

Gene expression databases

BgeeiENSMUSG00000028630 Expressed in 154 organ(s), highest expression level in heart
GenevisibleiQ5U4C9 MM

Family and domain databases

InterProiView protein in InterPro
IPR011009 Kinase-like_dom_sf
IPR000719 Prot_kinase_dom
IPR017441 Protein_kinase_ATP_BS
IPR008271 Ser/Thr_kinase_AS
PfamiView protein in Pfam
PF00069 Pkinase, 1 hit
SMARTiView protein in SMART
SM00220 S_TKc, 1 hit
SUPFAMiSSF56112 SSF56112, 1 hit
PROSITEiView protein in PROSITE
PS00107 PROTEIN_KINASE_ATP, 1 hit
PS50011 PROTEIN_KINASE_DOM, 1 hit
PS00108 PROTEIN_KINASE_ST, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiDYRK2_MOUSE
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: Q5U4C9
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: June 12, 2007
Last sequence update: December 7, 2004
Last modified: May 8, 2019
This is version 121 of the entry and version 1 of the sequence. See complete history.
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

<p>This section contains any relevant information that doesn’t fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

Complete proteome, Reference proteome

Documents

  1. SIMILARITY comments
    Index of protein domains and families
  2. Human and mouse protein kinases
    Human and mouse protein kinases: classification and index
  3. MGD cross-references
    Mouse Genome Database (MGD) cross-references in UniProtKB/Swiss-Prot
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again