Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 91 (08 May 2019)
Sequence version 1 (21 Dec 2004)
Previous versions | rss
Other tutorials and videosHelp videoFeedback
Protein

Nuclear receptor ROR-gamma

Gene

RORC

Organism
Pongo abelii (Sumatran orangutan) (Pongo pygmaeus abelii)
Status
Reviewed-Annotation score:

Annotation score:5 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at transcript leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Nuclear receptor that binds DNA as a monomer to ROR response elements (RORE) containing a single core motif half-site 5'-AGGTCA-3' preceded by a short A-T-rich sequence. Key regulator of cellular differentiation, immunity, peripheral circadian rhythm as well as lipid, steroid, xenobiotics and glucose metabolism. Considered to have intrinsic transcriptional activity, have some natural ligands like oxysterols that act as agonists (25-hydroxycholesterol) or inverse agonists (7-oxygenated sterols), enhancing or repressing the transcriptional activity, respectively. Recruits distinct combinations of cofactors to target gene regulatory regions to modulate their transcriptional expression, depending on the tissue, time and promoter contexts. Regulates the circadian expression of clock genes such as CRY1, ARNTL/BMAL1 and NR1D1 in peripheral tissues and in a tissue-selective manner. Competes with NR1D1 for binding to their shared DNA response element on some clock genes such as ARNTL/BMAL1, CRY1 and NR1D1 itself, resulting in NR1D1-mediated repression or RORC-mediated activation of the expression, leading to the circadian pattern of clock genes expression. Therefore influences the period length and stability of the clock. Involved in the regulation of the rhythmic expression of genes involved in glucose and lipid metabolism, including PLIN2 and AVPR1A. Negative regulator of adipocyte differentiation through the regulation of early phase genes expression, such as MMP3. Controls adipogenesis as well as adipocyte size and modulates insulin sensitivity in obesity. In liver, has specific and redundant functions with RORA as positive or negative modulator of expression of genes encoding phase I and Phase II proteins involved in the metabolism of lipids, steroids and xenobiotics, such as SULT1E1. Also plays also a role in the regulation of hepatocyte glucose metabolism through the regulation of G6PC and PCK1. Essential for thymopoiesis and the development of several secondary lymphoid tissues, including lymph nodes and Peyer's patches. Required for the generation of LTi (lymphoid tissue inducer) cells. Regulates thymocyte survival through DNA-binding on ROREs of target gene promoter regions and recruitment of coactivaros via the AF-2. Also plays a key role, downstream of IL6 and TGFB and synergistically with RORA, for lineage specification of uncommitted CD4+ T-helper (T(H)) cells into T(H)17 cells, antagonizing the T(H)1 program. Probably regulates IL17 and IL17F expression on T(H) by binding to the essential enhancer conserved non-coding sequence 2 (CNS2) in the IL17-IL17F locus. May also play a role in the pre-TCR activation cascade leading to the maturation of alpha/beta T-cells and may participate in the regulation of DNA accessibility in the TCR-J(alpha) locus. Regulates the rhythmic expression of PROX1 and promotes its nuclear localization. Plays an indispensable role in the induction of IFN-gamma dependent anti-mycobacterial systemic immunity (By similarity).By similarity

Regions

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section specifies the position and type of each DNA-binding domain present within the protein.<p><a href='/help/dna_bind' target='_top'>More...</a></p>DNA bindingi31 – 96Nuclear receptorPROSITE-ProRule annotationAdd BLAST66
<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section specifies the position(s) and type(s) of zinc fingers within the protein.<p><a href='/help/zn_fing' target='_top'>More...</a></p>Zinc fingeri31 – 51NR C4-typePROSITE-ProRule annotationAdd BLAST21
Zinc fingeri67 – 91NR C4-typePROSITE-ProRule annotationAdd BLAST25

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionActivator, Developmental protein, DNA-binding, Receptor
Biological processBiological rhythms, Transcription, Transcription regulation
LigandMetal-binding, Zinc

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Nuclear receptor ROR-gamma
Alternative name(s):
Nuclear receptor RZR-gamma
Nuclear receptor subfamily 1 group F member 3
Retinoid-related orphan receptor-gamma
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:RORC
Synonyms:NR1F3
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiPongo abelii (Sumatran orangutan) (Pongo pygmaeus abelii)
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri9601 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresPrimatesHaplorrhiniCatarrhiniHominidaePongo
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
  • UP000001595 <p>A UniProt <a href="http://www.uniprot.org/manual/proteomes_manual">proteome</a> can consist of several components. <br></br>The component name refers to the genomic component encoding a set of proteins.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Unplaced

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte & Seán O’Donoghue; Source: COMPARTMENTS

Keywords - Cellular componenti

Nucleus

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00002735751 – 518Nuclear receptor ROR-gammaAdd BLAST518

Proteomic databases

PRoteomics IDEntifications database

More...
PRIDEi
Q5RAP4

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

Interacts (via AF-2 motif) with the coactivators NCOA1, NCOA2 and PPARGC1A (via LXXLL motif) (By similarity).

Interacts with the corepressor NCOR1 (By similarity).

Interacts with CRY1 (By similarity).

Interacts (via AF-2 motif) with PROX1 (By similarity).

Interacts with FOXP3 (By similarity).

Interacts with NR0B2 (By similarity).

By similarity

Protein-protein interaction databases

STRING: functional protein association networks

More...
STRINGi
9601.ENSPPYP00000000995

<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

3D structure databases

SWISS-MODEL Repository - a database of annotated 3D protein structure models

More...
SMRi
Q5RAP4

Database of comparative protein structure models

More...
ModBasei
Search...

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Domains and Repeats

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/family_and_domains_section">Family and Domains</a> section describes the position and type of a domain, which is defined as a specific combination of secondary structures organized into a characteristic three-dimensional structure or fold.<p><a href='/help/domain' target='_top'>More...</a></p>Domaini269 – 508NR LBDPROSITE-ProRule annotationAdd BLAST240

Region

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni1 – 30ModulatingSequence analysisAdd BLAST30

Motif

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes a short (usually not more than 20 amino acids) conserved sequence motif of biological significance.<p><a href='/help/motif' target='_top'>More...</a></p>Motifi501 – 506AF-26

Compositional bias

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes the position of regions of compositional bias within the protein and the particular amino acids that are over-represented within those regions.<p><a href='/help/compbias' target='_top'>More...</a></p>Compositional biasi121 – 130Poly-Gln10

<p>This subsection of the ‘Family and domains’ section provides general information on the biological role of a domain. The term ‘domain’ is intended here in its wide acceptation, it may be a structural domain, a transmembrane region or a functional domain. Several domains are described in this subsection.<p><a href='/help/domain_cc' target='_top'>More...</a></p>Domaini

The AF-2 (activation function-2) motif is required for recruiting coregulators containing LXXLL motifs such as NCOA1 and NCOA2.By similarity

<p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Zinc finger

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Zinc fingeri31 – 51NR C4-typePROSITE-ProRule annotationAdd BLAST21
Zinc fingeri67 – 91NR C4-typePROSITE-ProRule annotationAdd BLAST25

Keywords - Domaini

Zinc-finger

Phylogenomic databases

evolutionary genealogy of genes: Non-supervised Orthologous Groups

More...
eggNOGi
KOG4216 Eukaryota
ENOG410XUGR LUCA

InParanoid: Eukaryotic Ortholog Groups

More...
InParanoidi
Q5RAP4

KEGG Orthology (KO)

More...
KOi
K08534

Database of Orthologous Groups

More...
OrthoDBi
583704at2759

Family and domain databases

Gene3D Structural and Functional Annotation of Protein Families

More...
Gene3Di
1.10.565.10, 1 hit
3.30.50.10, 1 hit

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR035500 NHR-like_dom_sf
IPR000536 Nucl_hrmn_rcpt_lig-bd
IPR001723 Nuclear_hrmn_rcpt
IPR003079 ROR_rcpt
IPR001628 Znf_hrmn_rcpt
IPR013088 Znf_NHR/GATA

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF00104 Hormone_recep, 1 hit
PF00105 zf-C4, 1 hit

Protein Motif fingerprint database; a protein domain database

More...
PRINTSi
PR01293 RORNUCRECPTR
PR00398 STRDHORMONER
PR00047 STROIDFINGER

Simple Modular Architecture Research Tool; a protein domain database

More...
SMARTi
View protein in SMART
SM00430 HOLI, 1 hit
SM00399 ZnF_C4, 1 hit

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF48508 SSF48508, 1 hit

PROSITE; a protein domain and family database

More...
PROSITEi
View protein in PROSITE
PS51843 NR_LBD, 1 hit
PS00031 NUCLEAR_REC_DBD_1, 1 hit
PS51030 NUCLEAR_REC_DBD_2, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

Q5RAP4-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MDRAPQRQHQ ASRELLAAKK THTSQIEVIP CKICGDKSSG IHYGVITCEG
60 70 80 90 100
CKGFFRRSQR CNAAYSCTRQ QNCPIDRTSR NRCQHCRLQK CLALGMSRDA
110 120 130 140 150
VKFGRMSKKQ RDSLHAEVQK QLQQRQQQQQ EPVVKTPPAG AQGADTLTYT
160 170 180 190 200
LGLPDGQLPL GSSPDLPEAS ACPPGLLKAS GSGPSYSNNL AKAGLNGASC
210 220 230 240 250
HLEYSPERGK AEGRESFYST GSQLTPDRCG LRFEEHRHPG LGELGQGPDS
260 270 280 290 300
YGSPSFRSTP EAPYASLTEI EHLVQSVCKS YRETCQLRLE DLLRQRSNIF
310 320 330 340 350
SREEVTGYQR KSMWEMWERC AHHLTEAIQY VVEFAKRLSG FMELCQNDQI
360 370 380 390 400
VLLKAGAVEV VLVRMCRAYN ADNRTVFFEG KYGGMELFRA LGCSELISSI
410 420 430 440 450
FDFSHSLSAL HFSEDEIALY TALVLINAYR PGLQEKRKVE QLQYNLELAF
460 470 480 490 500
HHHLCKTHRQ SILAKLPPKG KLRSLCSQHV ERLQIFQHLH PIVVQATFPP
510
LYKELFSTET ESPVGLSK
Length:518
Mass (Da):58,191
Last modified:December 21, 2004 - v1
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:i00ECC2D3FDBE851B
GO

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
CR858971 mRNA Translation: CAH91166.1

NCBI Reference Sequences

More...
RefSeqi
NP_001125682.1, NM_001132210.1

Genome annotation databases

Database of genes from NCBI RefSeq genomes

More...
GeneIDi
100172603

KEGG: Kyoto Encyclopedia of Genes and Genomes

More...
KEGGi
pon:100172603

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
CR858971 mRNA Translation: CAH91166.1
RefSeqiNP_001125682.1, NM_001132210.1

3D structure databases

SMRiQ5RAP4
ModBaseiSearch...

Protein-protein interaction databases

STRINGi9601.ENSPPYP00000000995

Proteomic databases

PRIDEiQ5RAP4

Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Genome annotation databases

GeneIDi100172603
KEGGipon:100172603

Organism-specific databases

Comparative Toxicogenomics Database

More...
CTDi
6097

Phylogenomic databases

eggNOGiKOG4216 Eukaryota
ENOG410XUGR LUCA
InParanoidiQ5RAP4
KOiK08534
OrthoDBi583704at2759

Family and domain databases

Gene3Di1.10.565.10, 1 hit
3.30.50.10, 1 hit
InterProiView protein in InterPro
IPR035500 NHR-like_dom_sf
IPR000536 Nucl_hrmn_rcpt_lig-bd
IPR001723 Nuclear_hrmn_rcpt
IPR003079 ROR_rcpt
IPR001628 Znf_hrmn_rcpt
IPR013088 Znf_NHR/GATA
PfamiView protein in Pfam
PF00104 Hormone_recep, 1 hit
PF00105 zf-C4, 1 hit
PRINTSiPR01293 RORNUCRECPTR
PR00398 STRDHORMONER
PR00047 STROIDFINGER
SMARTiView protein in SMART
SM00430 HOLI, 1 hit
SM00399 ZnF_C4, 1 hit
SUPFAMiSSF48508 SSF48508, 1 hit
PROSITEiView protein in PROSITE
PS51843 NR_LBD, 1 hit
PS00031 NUCLEAR_REC_DBD_1, 1 hit
PS51030 NUCLEAR_REC_DBD_2, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiRORG_PONAB
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: Q5RAP4
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: January 23, 2007
Last sequence update: December 21, 2004
Last modified: May 8, 2019
This is version 91 of the entry and version 1 of the sequence. See complete history.
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

<p>This section contains any relevant information that doesn’t fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

Complete proteome, Reference proteome

Documents

  1. SIMILARITY comments
    Index of protein domains and families
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again