Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Protein

5'-AMP-activated protein kinase catalytic subunit alpha-1

Gene

Prkaa1

Organism
Mus musculus (Mouse)
Status
Reviewed-Annotation score:

Annotation score:5 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at protein leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Regulates lipid synthesis by phosphorylating and inactivating lipid metabolic enzymes such as ACACA, ACACB, GYS1, HMGCR and LIPE; regulates fatty acid and cholesterol synthesis by phosphorylating acetyl-CoA carboxylase (ACACA and ACACB) and hormone-sensitive lipase (LIPE) enzymes, respectively. Regulates insulin-signaling and glycolysis by phosphorylating IRS1, PFKFB2 and PFKFB3. AMPK stimulates glucose uptake in muscle by increasing the translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane, possibly by mediating phosphorylation of TBC1D4/AS160. Regulates transcription and chromatin structure by phosphorylating transcription regulators involved in energy metabolism such as CRTC2/TORC2, FOXO3, histone H2B, HDAC5, MEF2C, MLXIPL/ChREBP, EP300, HNF4A, p53/TP53, SREBF1, SREBF2 and PPARGC1A. Acts as a key regulator of glucose homeostasis in liver by phosphorylating CRTC2/TORC2, leading to CRTC2/TORC2 sequestration in the cytoplasm. In response to stress, phosphorylates 'Ser-36' of histone H2B (H2BS36ph), leading to promote transcription. Acts as a key regulator of cell growth and proliferation by phosphorylating TSC2, RPTOR and ATG1/ULK1: in response to nutrient limitation, negatively regulates the mTORC1 complex by phosphorylating RPTOR component of the mTORC1 complex and by phosphorylating and activating TSC2. In response to nutrient limitation, promotes autophagy by phosphorylating and activating ATG1/ULK1. In that process also activates WDR45. In response to nutrient limitation, phosphorylates transcription factor FOXO3 promoting FOXO3 mitochondrial import (PubMed:23283301). AMPK also acts as a regulator of circadian rhythm by mediating phosphorylation of CRY1, leading to destabilize it. May regulate the Wnt signaling pathway by phosphorylating CTNNB1, leading to stabilize it. Also has tau-protein kinase activity: in response to amyloid beta A4 protein (APP) exposure, activated by CAMKK2, leading to phosphorylation of MAPT/TAU; however the relevance of such data remains unclear in vivo. Also phosphorylates CFTR, EEF2K, KLC1, NOS3 and SLC12A1.13 Publications

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes the catalytic activity of an enzyme, i.e. a chemical reaction that the enzyme catalyzes.<p><a href='/help/catalytic_activity' target='_top'>More...</a></p>Catalytic activityi

<p>This subsection of the ‘Function’ section provides information relevant to cofactors. A cofactor is any non-protein substance required for a protein to be catalytically active. Some cofactors are inorganic, such as the metal atoms zinc, iron, and copper in various oxidation states. Others, such as most vitamins, are organic.<p><a href='/help/cofactor' target='_top'>More...</a></p>Cofactori

Mg2+By similarity

<p>This subsection of the ‘Function’ section describes regulatory mechanisms for enzymes, transporters or microbial transcription factors, and reports the components which regulate (by activation or inhibition) the reaction.<p><a href='/help/activity_regulation' target='_top'>More...</a></p>Activity regulationi

Activated by phosphorylation on Thr-183. Binding of AMP to non-catalytic gamma subunit (PRKAG1, PRKAG2 or PRKAG3) results in allosteric activation, inducing phosphorylation on Thr-183. AMP-binding to gamma subunit also sustains activity by preventing dephosphorylation of Thr-183. ADP also stimulates Thr-183 phosphorylation, without stimulating already phosphorylated AMPK. ATP promotes dephosphorylation of Thr-183, rendering the enzyme inactive. Under physiological conditions AMPK mainly exists in its inactive form in complex with ATP, which is much more abundant than AMP. Selectively inhibited by compound C (6-[4-(2-Piperidin-1-yl-ethoxy)-phenyl)]-3-pyridin-4-yl-pyyrazolo[1,5-a] pyrimidine. Activated by resveratrol, a natural polyphenol present in red wine, and S17834, a synthetic polyphenol.3 Publications

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Function’ section describes the interaction between a single amino acid and another chemical entity. Priority is given to the annotation of physiological ligands.<p><a href='/help/binding' target='_top'>More...</a></p>Binding sitei56ATPPROSITE-ProRule annotation1
<p>This subsection of the ‘Function’ section is used for enzymes and indicates the residues directly involved in catalysis.<p><a href='/help/act_site' target='_top'>More...</a></p>Active sitei150Proton acceptorPROSITE-ProRule annotation1

Regions

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Function’ section describes a region in the protein which binds nucleotide phosphates. It always involves more than one amino acid and includes all residues involved in nucleotide-binding.<p><a href='/help/np_bind' target='_top'>More...</a></p>Nucleotide bindingi33 – 41ATPPROSITE-ProRule annotation9

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionChromatin regulator, Kinase, Serine/threonine-protein kinase, Transferase
Biological processAutophagy, Biological rhythms, Cholesterol biosynthesis, Cholesterol metabolism, Fatty acid biosynthesis, Fatty acid metabolism, Lipid biosynthesis, Lipid metabolism, Steroid biosynthesis, Steroid metabolism, Sterol biosynthesis, Sterol metabolism, Transcription, Transcription regulation, Wnt signaling pathway
LigandATP-binding, Magnesium, Metal-binding, Nucleotide-binding

Enzyme and pathway databases

Reactome - a knowledgebase of biological pathways and processes

More...
Reactomei
R-MMU-1632852 Macroautophagy
R-MMU-380972 Energy dependent regulation of mTOR by LKB1-AMPK
R-MMU-5628897 TP53 Regulates Metabolic Genes
R-MMU-6804756 Regulation of TP53 Activity through Phosphorylation

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
5'-AMP-activated protein kinase catalytic subunit alpha-1 (EC:2.7.11.1By similarity)
Short name:
AMPK subunit alpha-1
Alternative name(s):
Acetyl-CoA carboxylase kinase (EC:2.7.11.27By similarity)
Short name:
ACACA kinase
Hydroxymethylglutaryl-CoA reductase kinase (EC:2.7.11.31By similarity)
Short name:
HMGCR kinase
Tau-protein kinase PRKAA1 (EC:2.7.11.26)
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:Prkaa1
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiMus musculus (Mouse)
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri10090 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresGliresRodentiaMyomorphaMuroideaMuridaeMurinaeMusMus
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
  • UP000000589 <p>A UniProt <a href="http://www.uniprot.org/manual/proteomes_manual">proteome</a> can consist of several components. <br></br>The component name refers to the genomic component encoding a set of proteins.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Chromosome 15

Organism-specific databases

Mouse genome database (MGD) from Mouse Genome Informatics (MGI)

More...
MGIi
MGI:2145955 Prkaa1

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte; Source: COMPARTMENTS

Keywords - Cellular componenti

Cytoplasm, Nucleus

<p>This section provides information on the disease(s) and phenotype(s) associated with a protein.<p><a href='/help/pathology_and_biotech_section' target='_top'>More...</a></p>Pathology & Biotechi

Mutagenesis

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/manual/pathology_and_biotech_section">'Pathology and Biotech'</a> section describes the effect of the experimental mutation of one or more amino acid(s) on the biological properties of the protein.<p><a href='/help/mutagen' target='_top'>More...</a></p>Mutagenesisi168D → A: Loss of kinase activity. 2 Publications1

Chemistry databases

ChEMBL database of bioactive drug-like small molecules

More...
ChEMBLi
CHEMBL1075161

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00000855901 – 5595'-AMP-activated protein kinase catalytic subunit alpha-1Add BLAST559

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei32PhosphothreonineBy similarity1
Modified residuei183Phosphothreonine; by LKB1 and CaMKK23 Publications1
Modified residuei355PhosphothreonineBy similarity1
Modified residuei356PhosphoserineBy similarity1
Modified residuei360Phosphoserine; by ULK1By similarity1
Modified residuei368Phosphothreonine; by ULK1By similarity1
Modified residuei382PhosphothreonineBy similarity1
Modified residuei397Phosphoserine; by ULK1By similarity1
Modified residuei467PhosphoserineBy similarity1
Modified residuei486PhosphoserineCombined sources1
Modified residuei488Phosphothreonine; by ULK1By similarity1
Modified residuei490PhosphothreonineCombined sources1
Modified residuei496PhosphoserineCombined sources1
Modified residuei508PhosphoserineBy similarity1
Modified residuei524PhosphoserineBy similarity1
Modified residuei527PhosphoserineBy similarity1

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

Phosphorylated at Thr-183 by STK11/LKB1 in complex with STE20-related adapter-alpha (STRADA) pseudo kinase and CAB39. Also phosphorylated at Thr-183 by CAMKK2; triggered by a rise in intracellular calcium ions, without detectable changes in the AMP/ATP ratio. CAMKK1 can also phosphorylate Thr-183, but at a much lower level. Dephosphorylated by protein phosphatase 2A and 2C (PP2A and PP2C). Phosphorylated by ULK1 and ULK2; leading to negatively regulate AMPK activity and suggesting the existence of a regulatory feedback loop between ULK1, ULK2 and AMPK. Dephosphorylated by PPM1A and PPM1B (By similarity).By similarity
Ubiquitinated.1 Publication

Keywords - PTMi

Phosphoprotein, Ubl conjugation

Proteomic databases

Encyclopedia of Proteome Dynamics

More...
EPDi
Q5EG47

MaxQB - The MaxQuant DataBase

More...
MaxQBi
Q5EG47

PaxDb, a database of protein abundance averages across all three domains of life

More...
PaxDbi
Q5EG47

PRoteomics IDEntifications database

More...
PRIDEi
Q5EG47

PTM databases

CarbonylDB database of protein carbonylation sites

More...
CarbonylDBi
Q5EG47

iPTMnet integrated resource for PTMs in systems biology context

More...
iPTMneti
Q5EG47

Comprehensive resource for the study of protein post-translational modifications (PTMs) in human, mouse and rat.

More...
PhosphoSitePlusi
Q5EG47

SwissPalm database of S-palmitoylation events

More...
SwissPalmi
Q5EG47

<p>This section provides information on the expression of a gene at the mRNA or protein level in cells or in tissues of multicellular organisms.<p><a href='/help/expression_section' target='_top'>More...</a></p>Expressioni

Gene expression databases

Bgee dataBase for Gene Expression Evolution

More...
Bgeei
ENSMUSG00000050697 Expressed in 237 organ(s), highest expression level in islet of Langerhans

ExpressionAtlas, Differential and Baseline Expression

More...
ExpressionAtlasi
Q5EG47 baseline and differential

Genevisible search portal to normalized and curated expression data from Genevestigator

More...
Genevisiblei
Q5EG47 MM

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

AMPK is a heterotrimer of an alpha catalytic subunit (PRKAA1 or PRKAA2), a beta (PRKAB1 or PRKAB2) and a gamma non-catalytic subunits (PRKAG1, PRKAG2 or PRKAG3). Interacts with FNIP1 and FNIP2.

<p>This subsection of the '<a href="http://www.uniprot.org/help/interaction_section%27">Interaction</a> section provides information about binary protein-protein interactions. The data presented in this section are a quality-filtered subset of binary interactions automatically derived from the <a href="http://www.ebi.ac.uk/intact/">IntAct database</a>. It is updated on a monthly basis. Each binary interaction is displayed on a separate line.<p><a href='/help/binary_interactions' target='_top'>More...</a></p>Binary interactionsi

WithEntry#Exp.IntActNotes
YAP1P469372EBI-7282395,EBI-1044059From Homo sapiens.

GO - Molecular functioni

Protein-protein interaction databases

The Biological General Repository for Interaction Datasets (BioGrid)

More...
BioGridi
222923, 33 interactors

CORUM comprehensive resource of mammalian protein complexes

More...
CORUMi
Q5EG47

Database of interacting proteins

More...
DIPi
DIP-47622N

Protein interaction database and analysis system

More...
IntActi
Q5EG47, 27 interactors

Molecular INTeraction database

More...
MINTi
Q5EG47

STRING: functional protein association networks

More...
STRINGi
10090.ENSMUSP00000063166

<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

Secondary structure

1559
Legend: HelixTurnBeta strandPDB Structure known for this area
Show more details

3D structure databases

Protein Model Portal of the PSI-Nature Structural Biology Knowledgebase

More...
ProteinModelPortali
Q5EG47

SWISS-MODEL Repository - a database of annotated 3D protein structure models

More...
SMRi
Q5EG47

Database of comparative protein structure models

More...
ModBasei
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Domains and Repeats

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/family_and_domains_section">Family and Domains</a> section describes the position and type of a domain, which is defined as a specific combination of secondary structures organized into a characteristic three-dimensional structure or fold.<p><a href='/help/domain' target='_top'>More...</a></p>Domaini27 – 279Protein kinasePROSITE-ProRule annotationAdd BLAST253

Region

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni302 – 381AISBy similarityAdd BLAST80

<p>This subsection of the ‘Family and domains’ section provides general information on the biological role of a domain. The term ‘domain’ is intended here in its wide acceptation, it may be a structural domain, a transmembrane region or a functional domain. Several domains are described in this subsection.<p><a href='/help/domain_cc' target='_top'>More...</a></p>Domaini

The AIS (autoinhibitory sequence) region shows some sequence similarity with the ubiquitin-associated domains and represses kinase activity.By similarity

<p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Phylogenomic databases

evolutionary genealogy of genes: Non-supervised Orthologous Groups

More...
eggNOGi
KOG0586 Eukaryota
ENOG410XNQ0 LUCA

Ensembl GeneTree

More...
GeneTreei
ENSGT00940000158865

The HOGENOM Database of Homologous Genes from Fully Sequenced Organisms

More...
HOGENOMi
HOG000233016

The HOVERGEN Database of Homologous Vertebrate Genes

More...
HOVERGENi
HBG050432

InParanoid: Eukaryotic Ortholog Groups

More...
InParanoidi
Q5EG47

KEGG Orthology (KO)

More...
KOi
K07198

Database of Orthologous Groups

More...
OrthoDBi
EOG091G03TG

Database for complete collections of gene phylogenies

More...
PhylomeDBi
Q5EG47

TreeFam database of animal gene trees

More...
TreeFami
TF314032

Family and domain databases

Conserved Domains Database

More...
CDDi
cd12199 AMPKA1_C, 1 hit

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR032270 AMPK_C
IPR039137 AMPKA1_C
IPR028375 KA1/Ssp2_C
IPR011009 Kinase-like_dom_sf
IPR000719 Prot_kinase_dom
IPR017441 Protein_kinase_ATP_BS
IPR008271 Ser/Thr_kinase_AS

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF16579 AdenylateSensor, 1 hit
PF00069 Pkinase, 1 hit

Simple Modular Architecture Research Tool; a protein domain database

More...
SMARTi
View protein in SMART
SM00220 S_TKc, 1 hit

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF103243 SSF103243, 1 hit
SSF56112 SSF56112, 1 hit

PROSITE; a protein domain and family database

More...
PROSITEi
View protein in PROSITE
PS00107 PROTEIN_KINASE_ATP, 1 hit
PS50011 PROTEIN_KINASE_DOM, 1 hit
PS00108 PROTEIN_KINASE_ST, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>.<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequence (1+)i

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

This entry has 1 described isoform and 1 potential isoform that is computationally mapped.Show allAlign All

Q5EG47-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MRRLSSWRKM ATAEKQKHDG RVKIGHYILG DTLGVGTFGK VKVGKHELTG
60 70 80 90 100
HKVAVKILNR QKIRSLDVVG KIRREIQNLK LFRHPHIIKL YQVISTPSDI
110 120 130 140 150
FMVMEYVSGG ELFDYICKNG RLDEKESRRL FQQILSGVDY CHRHMVVHRD
160 170 180 190 200
LKPENVLLDA HMNAKIADFG LSNMMSDGEF LRTSCGSPNY AAPEVISGRL
210 220 230 240 250
YAGPEVDIWS SGVILYALLC GTLPFDDDHV PTLFKKICDG IFYTPQYLNP
260 270 280 290 300
SVISLLKHML QVDPMKRAAI KDIREHEWFK QDLPKYLFPE DPSYSSTMID
310 320 330 340 350
DEALKEVCEK FECSEEEVLS CLYNRNHQDP LAVAYHLIID NRRIMNEAKD
360 370 380 390 400
FYLATSPPDS FLDDHHLTRP HPERVPFLVA ETPRARHTLD ELNPQKSKHQ
410 420 430 440 450
GVRKAKWHLG IRSQSRPNDI MAEVCRAIKQ LDYEWKVVNP YYLRVRRKNP
460 470 480 490 500
VTSTFSKMSL QLYQVDSRTY LLDFRSIDDE ITEAKSGTAT PQRSGSISNY
510 520 530 540 550
RSCQRSDSDA EAQGKPSDVS LTSSVTSLDS SPVDVAPRPG SHTIEFFEMC

ANLIKILAQ
Length:559
Mass (Da):63,929
Last modified:July 28, 2009 - v2
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:i08632503663D395B
GO

<p>In eukaryotic reference proteomes, unreviewed entries that are likely to belong to the same gene are computationally mapped, based on gene identifiers from Ensembl, EnsemblGenomes and model organism databases.<p><a href='/help/gene_centric_isoform_mapping' target='_top'>More...</a></p>Computationally mapped potential isoform sequencesi

There is 1 potential isoform mapped to this entry.BLASTAlignShow allAdd to basket
EntryEntry nameProtein names
Gene namesLengthAnnotation
Q3TUQ7Q3TUQ7_MOUSE
Non-specific serine/threonine prote...
Prkaa1
550Annotation score:

Annotation score:2 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>

Experimental Info

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Sequence’ section reports difference(s) between the canonical sequence (displayed by default in the entry) and the different sequence submissions merged in the entry. These various submissions may originate from different sequencing projects, different types of experiments, or different biological samples. Sequence conflicts are usually of unknown origin.<p><a href='/help/conflict' target='_top'>More...</a></p>Sequence conflicti11 – 12Missing in AAW79567 (Ref. 2) Curated2

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
AC131919 Genomic DNA No translation available.
AC135079 Genomic DNA No translation available.
AY885266 mRNA Translation: AAW79567.1

The Consensus CDS (CCDS) project

More...
CCDSi
CCDS49574.1

NCBI Reference Sequences

More...
RefSeqi
NP_001013385.3, NM_001013367.3

UniGene gene-oriented nucleotide sequence clusters

More...
UniGenei
Mm.207004

Genome annotation databases

Ensembl eukaryotic genome annotation project

More...
Ensembli
ENSMUST00000051186; ENSMUSP00000063166; ENSMUSG00000050697

Database of genes from NCBI RefSeq genomes

More...
GeneIDi
105787

KEGG: Kyoto Encyclopedia of Genes and Genomes

More...
KEGGi
mmu:105787

UCSC genome browser

More...
UCSCi
uc007vct.1 mouse

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
AC131919 Genomic DNA No translation available.
AC135079 Genomic DNA No translation available.
AY885266 mRNA Translation: AAW79567.1
CCDSiCCDS49574.1
RefSeqiNP_001013385.3, NM_001013367.3
UniGeneiMm.207004

3D structure databases

Select the link destinations:

Protein Data Bank Europe

More...
PDBei

Protein Data Bank RCSB

More...
RCSB PDBi

Protein Data Bank Japan

More...
PDBji
Links Updated
PDB entryMethodResolution (Å)ChainPositionsPDBsum
5UFUX-ray3.45A11-480[»]
A536-559[»]
ProteinModelPortaliQ5EG47
SMRiQ5EG47
ModBaseiSearch...
MobiDBiSearch...

Protein-protein interaction databases

BioGridi222923, 33 interactors
CORUMiQ5EG47
DIPiDIP-47622N
IntActiQ5EG47, 27 interactors
MINTiQ5EG47
STRINGi10090.ENSMUSP00000063166

Chemistry databases

ChEMBLiCHEMBL1075161

PTM databases

CarbonylDBiQ5EG47
iPTMnetiQ5EG47
PhosphoSitePlusiQ5EG47
SwissPalmiQ5EG47

Proteomic databases

EPDiQ5EG47
MaxQBiQ5EG47
PaxDbiQ5EG47
PRIDEiQ5EG47

Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Genome annotation databases

EnsembliENSMUST00000051186; ENSMUSP00000063166; ENSMUSG00000050697
GeneIDi105787
KEGGimmu:105787
UCSCiuc007vct.1 mouse

Organism-specific databases

Comparative Toxicogenomics Database

More...
CTDi
5562
MGIiMGI:2145955 Prkaa1

Phylogenomic databases

eggNOGiKOG0586 Eukaryota
ENOG410XNQ0 LUCA
GeneTreeiENSGT00940000158865
HOGENOMiHOG000233016
HOVERGENiHBG050432
InParanoidiQ5EG47
KOiK07198
OrthoDBiEOG091G03TG
PhylomeDBiQ5EG47
TreeFamiTF314032

Enzyme and pathway databases

ReactomeiR-MMU-1632852 Macroautophagy
R-MMU-380972 Energy dependent regulation of mTOR by LKB1-AMPK
R-MMU-5628897 TP53 Regulates Metabolic Genes
R-MMU-6804756 Regulation of TP53 Activity through Phosphorylation

Miscellaneous databases

Protein Ontology

More...
PROi
PR:Q5EG47

The Stanford Online Universal Resource for Clones and ESTs

More...
SOURCEi
Search...

Gene expression databases

BgeeiENSMUSG00000050697 Expressed in 237 organ(s), highest expression level in islet of Langerhans
ExpressionAtlasiQ5EG47 baseline and differential
GenevisibleiQ5EG47 MM

Family and domain databases

CDDicd12199 AMPKA1_C, 1 hit
InterProiView protein in InterPro
IPR032270 AMPK_C
IPR039137 AMPKA1_C
IPR028375 KA1/Ssp2_C
IPR011009 Kinase-like_dom_sf
IPR000719 Prot_kinase_dom
IPR017441 Protein_kinase_ATP_BS
IPR008271 Ser/Thr_kinase_AS
PfamiView protein in Pfam
PF16579 AdenylateSensor, 1 hit
PF00069 Pkinase, 1 hit
SMARTiView protein in SMART
SM00220 S_TKc, 1 hit
SUPFAMiSSF103243 SSF103243, 1 hit
SSF56112 SSF56112, 1 hit
PROSITEiView protein in PROSITE
PS00107 PROTEIN_KINASE_ATP, 1 hit
PS50011 PROTEIN_KINASE_DOM, 1 hit
PS00108 PROTEIN_KINASE_ST, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiAAPK1_MOUSE
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: Q5EG47
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: September 13, 2005
Last sequence update: July 28, 2009
Last modified: December 5, 2018
This is version 138 of the entry and version 2 of the sequence. See complete history.
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

<p>This section contains any relevant information that doesn’t fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

3D-structure, Complete proteome, Reference proteome

Documents

  1. PDB cross-references
    Index of Protein Data Bank (PDB) cross-references
  2. SIMILARITY comments
    Index of protein domains and families
  3. Human and mouse protein kinases
    Human and mouse protein kinases: classification and index
  4. MGD cross-references
    Mouse Genome Database (MGD) cross-references in UniProtKB/Swiss-Prot
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again