Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 101 (02 Jun 2021)
Sequence version 1 (01 Nov 1996)
Previous versions | rss
Add a publicationFeedback
Protein

Transcription factor S

Gene

tfs

Organism
Thermococcus celer
Status
Reviewed-Annotation score:

Annotation score:3 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the 'correct annotation' for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at protein leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the 'protein existence' evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Induces RNA cleavage activity in the RNA polymerase. In its presence, the cleavage activity of the RNA polymerase truncates the RNA back to position +15 in a stepwise manner by releasing mainly dinucleotides from the 3'-end of the nascent RNA. The truncated RNAs are able to continue elongation. Involved in transcriptional proofreading and fidelity. Misincorporation of nucleotides during elongation of transcription leads to arrested elongation complexes which are rescued by TFS-promoted removal of a dinucleotide from the 3'-end. TFS is able to induce a cleavage resynthesis cycle in stalled elongation complexes (resulting from the next missing nucleotide or a reduced incorporation rate of a wrong nucleotide) preventing misincorporation and enabling proofreading in a post-incorporation manner. Pausing of elongation complexes is the main determinant of TFS-induced RNA cleavage.

By similarity

Caution

More similar by sequence similarity to the eukaryotic RNA polymerase subunits.Curated

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/function%5Fsection">Function</a> section indicates at which position the protein binds a given metal ion. The nature of the metal is indicated in the 'Description' field.<p><a href='/help/metal' target='_top'>More...</a></p>Metal bindingi71Zinc1 Publication1
Metal bindingi74Zinc1 Publication1
Metal bindingi99Zinc1 Publication1
Metal bindingi102Zinc1 Publication1

Regions

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/function%5Fsection">Function</a> section specifies the position(s) and type(s) of zinc fingers within the protein.<p><a href='/help/zn_fing' target='_top'>More...</a></p>Zinc fingeri4 – 25C4-typeSequence analysisAdd BLAST22
Zinc fingeri67 – 107TFIIS-typePROSITE-ProRule annotationAdd BLAST41

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

  • DNA binding Source: UniProtKB-KW
  • zinc ion binding Source: UniProtKB

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionDNA-binding
Biological processTranscription, Transcription regulation
LigandMetal-binding, Zinc

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Transcription factor SBy similarity
Alternative name(s):
Transcription elongation factor IIS/RNA polymerase subunit homologBy similarity
Short name:
TFIIS/RPSU homologBy similarity
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: 'Name', 'Synonyms', 'Ordered locus names' and 'ORF names'.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:tfsBy similarity
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiThermococcus celer
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the 'taxonomic identifier' or 'taxid'.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri2264 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiArchaeaEuryarchaeotaThermococciThermococcalesThermococcaceaeThermococcus

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the 'PTM / Processing' section describes the extent of a polypeptide chain in the mature protein following processing or proteolytic cleavage.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00001214831 – 110Transcription factor SAdd BLAST110

<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

Secondary structure

1110
Legend: HelixTurnBeta strandPDB Structure known for this area
Show more details

3D structure databases

SWISS-MODEL Repository - a database of annotated 3D protein structure models

More...
SMRi
Q56254

Database of comparative protein structure models

More...
ModBasei
Search...

Protein Data Bank in Europe - Knowledge Base

More...
PDBe-KBi
Search...

Miscellaneous databases

Relative evolutionary importance of amino acids within a protein sequence

More...
EvolutionaryTracei
Q56254

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

<p>This subsection of the 'Family and domains' section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Zinc finger

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Zinc fingeri4 – 25C4-typeSequence analysisAdd BLAST22
Zinc fingeri67 – 107TFIIS-typePROSITE-ProRule annotationAdd BLAST41

Keywords - Domaini

Zinc-finger

Family and domain databases

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR019761, DNA-dir_RNA_pol-M_15_CS
IPR001529, DNA-dir_RNA_pol_M/15kDasu
IPR012164, Rpa12/Rpb9/Rpc10/TFS
IPR006288, TFS
IPR001222, Znf_TFIIS

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF02150, RNA_POL_M_15KD, 1 hit
PF01096, TFIIS_C, 1 hit

PIRSF; a whole-protein classification database

More...
PIRSFi
PIRSF005586, RNApol_RpoM, 1 hit

Simple Modular Architecture Research Tool; a protein domain database

More...
SMARTi
View protein in SMART
SM00661, RPOL9, 1 hit
SM00440, ZnF_C2C2, 1 hit

TIGRFAMs; a protein family database

More...
TIGRFAMsi
TIGR01384, TFS_arch, 1 hit

PROSITE; a protein domain and family database

More...
PROSITEi
View protein in PROSITE
PS01030, RNA_POL_M_15KD, 1 hit
PS00466, ZF_TFIIS_1, 1 hit
PS51133, ZF_TFIIS_2, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence%5Flength">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences%5Fsection">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical%5Fand%5Fisoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

Q56254-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MKFCPKCGNL MLPDRKRKVW VCRSCGYEEP FDEEKDREKT VIKQEVKHKP
60 70 80 90 100
DEGIVVIEQD LKTLPTTKIT CPKCGNDTAY WWEMQTRAGD EPSTIFYKCT
110
KCGHTWRSYE
Length:110
Mass (Da):12,970
Last modified:November 1, 1996 - v1
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:i3AE99D6905FD4E4E
GO

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
L27650 Unassigned DNA Translation: AAA72052.1

Protein sequence database of the Protein Information Resource

More...
PIRi
A55263

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
L27650 Unassigned DNA Translation: AAA72052.1
PIRiA55263

3D structure databases

Select the link destinations:

Protein Data Bank Europe

More...
PDBei

Protein Data Bank RCSB

More...
RCSB PDBi

Protein Data Bank Japan

More...
PDBji
Links Updated
PDB entryMethodResolution (Å)ChainPositionsPDBsum
1QYPNMR-A58-110[»]
SMRiQ56254
ModBaseiSearch...
PDBe-KBiSearch...

Miscellaneous databases

EvolutionaryTraceiQ56254

Family and domain databases

InterProiView protein in InterPro
IPR019761, DNA-dir_RNA_pol-M_15_CS
IPR001529, DNA-dir_RNA_pol_M/15kDasu
IPR012164, Rpa12/Rpb9/Rpc10/TFS
IPR006288, TFS
IPR001222, Znf_TFIIS
PfamiView protein in Pfam
PF02150, RNA_POL_M_15KD, 1 hit
PF01096, TFIIS_C, 1 hit
PIRSFiPIRSF005586, RNApol_RpoM, 1 hit
SMARTiView protein in SMART
SM00661, RPOL9, 1 hit
SM00440, ZnF_C2C2, 1 hit
TIGRFAMsiTIGR01384, TFS_arch, 1 hit
PROSITEiView protein in PROSITE
PS01030, RNA_POL_M_15KD, 1 hit
PS00466, ZF_TFIIS_1, 1 hit
PS51133, ZF_TFIIS_2, 1 hit

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the 'Entry information' section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiTFS_THECE
<p>This subsection of the 'Entry information' section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called 'Primary (citable) accession number'.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: Q56254
<p>This subsection of the 'Entry information' section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification ('Last modified'). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical%5Fand%5Fisoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: July 15, 1998
Last sequence update: November 1, 1996
Last modified: June 2, 2021
This is version 101 of the entry and version 1 of the sequence. See complete history.
<p>This subsection of the 'Entry information' section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programProkaryotic Protein Annotation Program

<p>This section contains any relevant information that doesn't fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

3D-structure

Documents

  1. PDB cross-references
    Index of Protein Data Bank (PDB) cross-references
  2. SIMILARITY comments
    Index of protein domains and families
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again