Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 106 (05 Jun 2019)
Sequence version 2 (21 Mar 2006)
Previous versions | rss
Help videoAdd a publicationFeedback
Protein

Interleukin-1 receptor-associated kinase 1

Gene

IRAK1

Organism
Bos taurus (Bovine)
Status
Reviewed-Annotation score:

Annotation score:5 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at transcript leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Serine/threonine-protein kinase that plays a critical role in initiating innate immune response against foreign pathogens. Involved in Toll-like receptor (TLR) and IL-1R signaling pathways. Is rapidly recruited by MYD88 to the receptor-signaling complex upon TLR activation. Association with MYD88 leads to IRAK1 phosphorylation by IRAK4 and subsequent autophosphorylation and kinase activation. Phosphorylates E3 ubiquitin ligases Pellino proteins (PELI1, PELI2 and PELI3) to promote pellino-mediated polyubiquitination of IRAK1. Then, the ubiquitin-binding domain of IKBKG/NEMO binds to polyubiquitinated IRAK1 bringing together the IRAK1-MAP3K7/TAK1-TRAF6 complex and the NEMO-IKKA-IKKB complex. In turn, MAP3K7/TAK1 activates IKKs (CHUK/IKKA and IKBKB/IKKB) leading to NF-kappa-B nuclear translocation and activation. Alternatively, phosphorylates TIRAP to promote its ubiquitination and subsequent degradation. Phosphorylates the interferon regulatory factor 7 (IRF7) to induce its activation and translocation to the nucleus, resulting in transcriptional activation of type I IFN genes, which drive the cell in an antiviral state. When sumoylated, translocates to the nucleus and phosphorylates STAT3 (By similarity).By similarity

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes the catalytic activity of an enzyme, i.e. a chemical reaction that the enzyme catalyzes.<p><a href='/help/catalytic_activity' target='_top'>More...</a></p>Catalytic activityi

<p>This subsection of the ‘Function’ section provides information relevant to cofactors. A cofactor is any non-protein substance required for a protein to be catalytically active. Some cofactors are inorganic, such as the metal atoms zinc, iron, and copper in various oxidation states. Others, such as most vitamins, are organic.<p><a href='/help/cofactor' target='_top'>More...</a></p>Cofactori

Mg2+By similarity

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes the interaction between a single amino acid and another chemical entity. Priority is given to the annotation of physiological ligands.<p><a href='/help/binding' target='_top'>More...</a></p>Binding sitei239ATPPROSITE-ProRule annotation1
<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section is used for enzymes and indicates the residues directly involved in catalysis.<p><a href='/help/act_site' target='_top'>More...</a></p>Active sitei340Proton acceptorPROSITE-ProRule annotation1
Binding sitei358ATPPROSITE-ProRule annotation1

Regions

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes a region in the protein which binds nucleotide phosphates. It always involves more than one amino acid and includes all residues involved in nucleotide-binding.<p><a href='/help/np_bind' target='_top'>More...</a></p>Nucleotide bindingi218 – 226ATPPROSITE-ProRule annotation9
Nucleotide bindingi342 – 345ATPPROSITE-ProRule annotation4

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionKinase, Serine/threonine-protein kinase, Transferase
Biological processImmunity, Innate immunity
LigandATP-binding, Magnesium, Nucleotide-binding

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Interleukin-1 receptor-associated kinase 1 (EC:2.7.11.1)
Short name:
IRAK-1
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:IRAK1
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiBos taurus (Bovine)
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri9913 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaLaurasiatheriaCetartiodactylaRuminantiaPecoraBovidaeBovinaeBos
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
  • UP000009136 <p>A UniProt <a href="http://www.uniprot.org/manual/proteomes_manual">proteome</a> can consist of several components. <br></br>The component name refers to the genomic component encoding a set of proteins.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Chromosome X

Organism-specific databases

Vertebrate Gene Nomenclature Database

More...
VGNCi
VGNC:30264 IRAK1

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte & Seán O’Donoghue; Source: COMPARTMENTS

Keywords - Cellular componenti

Cytoplasm, Lipid droplet, Nucleus

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00002697081 – 718Interleukin-1 receptor-associated kinase 1Add BLAST718

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei66Phosphothreonine; by PKC/PRKCIBy similarity1
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section describes <strong>covalent linkages</strong> of various types formed <strong>between two proteins (interchain cross-links)</strong> or <strong>between two parts of the same protein (intrachain cross-links)</strong>, except the disulfide bonds that are annotated in the <a href="http://www.uniprot.org/manual/disulfid">'Disulfide bond'</a> subsection.<p><a href='/help/crosslnk' target='_top'>More...</a></p>Cross-linki134Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin)By similarity
Cross-linki180Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin)By similarity
Modified residuei209Phosphothreonine; by IRAK4By similarity1
Modified residuei375PhosphoserineBy similarity1
Modified residuei387PhosphothreonineBy similarity1
Modified residuei556PhosphoserineBy similarity1

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

Following recruitment on the activated receptor complex, phosphorylated on Thr-209, probably by IRAK4, resulting in a conformational change of the kinase domain, allowing further phosphorylations to take place. Thr-387 phosphorylation in the activation loop is required to achieve full enzymatic activity (By similarity).By similarity
Polyubiquitinated by TRAF6 after cell stimulation with IL-1-beta by PELI1, PELI2 and PELI3. Polyubiquitination occurs with polyubiquitin chains linked through 'Lys-63'. Ubiquitination promotes interaction with NEMO/IKBKG. Also sumoylated; leading to nuclear translocation (By similarity).By similarity

Keywords - PTMi

Isopeptide bond, Phosphoprotein, Ubl conjugation

Proteomic databases

PaxDb, a database of protein abundance averages across all three domains of life

More...
PaxDbi
Q2LGB3

PRoteomics IDEntifications database

More...
PRIDEi
Q2LGB3

<p>This section provides information on the expression of a gene at the mRNA or protein level in cells or in tissues of multicellular organisms.<p><a href='/help/expression_section' target='_top'>More...</a></p>Expressioni

Gene expression databases

ExpressionAtlas, Differential and Baseline Expression

More...
ExpressionAtlasi
Q2LGB3 baseline and differential

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

Homodimer (By similarity).

Forms a complex with TRAF6, PELI1, IRAK4 and MYD88 (By similarity). Direct binding of SMAD6 to PELI1 prevents complex formation and hence negatively regulates IL1R-TLR signaling and eventually NF-kappa-B-mediated gene expression (By similarity). The TRAF6-PELI1-IRAK1-IRAK4-MYD88 complex recruits MAP3K7/TAK1, TAB1 and TAB2 to mediate NF-kappa-B activation (By similarity). Interaction with MYD88 recruits IRAK1 to the stimulated receptor complex (By similarity).

Interacts with TOLLIP; this interaction occurs in the cytosol prior to receptor activation (By similarity).

Interacts with IL1RL1 (By similarity).

Interacts (when polyubiquitinated) with IKBKG/NEMO (By similarity).

Interacts with RSAD2/viperin (By similarity).

Interacts with IRAK1BP1 (By similarity).

Interacts with PELI2 (By similarity).

Interacts with ZC3H12A; this interaction increases the interaction between ZC3H12A and IKBKB/IKKB (By similarity).

Interacts with IRAK4 (By similarity).

Interacts with PELI3 (By similarity).

Interacts with PELI1 and TRAF6 (By similarity).

Interacts with INAVA; the interaction takes place upon PRR stimulation (By similarity).

Interacts (via C-terminus) with NFATC4 (via N-terminus) (By similarity).

By similarity

GO - Molecular functioni

Protein-protein interaction databases

STRING: functional protein association networks

More...
STRINGi
9913.ENSBTAP00000021407

<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

3D structure databases

SWISS-MODEL Repository - a database of annotated 3D protein structure models

More...
SMRi
Q2LGB3

Database of comparative protein structure models

More...
ModBasei
Search...

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Domains and Repeats

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/family_and_domains_section">Family and Domains</a> section describes the position and type of a domain, which is defined as a specific combination of secondary structures organized into a characteristic three-dimensional structure or fold.<p><a href='/help/domain' target='_top'>More...</a></p>Domaini27 – 106DeathAdd BLAST80
Domaini212 – 521Protein kinasePROSITE-ProRule annotationAdd BLAST310

Region

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni110 – 211ProST regionBy similarityAdd BLAST102

Compositional bias

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes the position of regions of compositional bias within the protein and the particular amino acids that are over-represented within those regions.<p><a href='/help/compbias' target='_top'>More...</a></p>Compositional biasi104 – 194Pro-richAdd BLAST91
Compositional biasi693 – 696Poly-Ser4

<p>This subsection of the ‘Family and domains’ section provides general information on the biological role of a domain. The term ‘domain’ is intended here in its wide acceptation, it may be a structural domain, a transmembrane region or a functional domain. Several domains are described in this subsection.<p><a href='/help/domain_cc' target='_top'>More...</a></p>Domaini

The ProST region is composed of many proline and serine residues (more than 20 of each) and some threonines. This region is the site of IRAK-1 hyperphosphorylation (By similarity).By similarity

<p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Phylogenomic databases

evolutionary genealogy of genes: Non-supervised Orthologous Groups

More...
eggNOGi
KOG1187 Eukaryota
COG0515 LUCA

Ensembl GeneTree

More...
GeneTreei
ENSGT00940000160502

The HOGENOM Database of Homologous Genes from Fully Sequenced Organisms

More...
HOGENOMi
HOG000015226

InParanoid: Eukaryotic Ortholog Groups

More...
InParanoidi
Q2LGB3

KEGG Orthology (KO)

More...
KOi
K04730

Database of Orthologous Groups

More...
OrthoDBi
684563at2759

Family and domain databases

Conserved Domains Database

More...
CDDi
cd08794 Death_IRAK1, 1 hit

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR011029 DEATH-like_dom_sf
IPR000488 Death_domain
IPR035533 Death_IRAK1
IPR035536 IRAK1
IPR011009 Kinase-like_dom_sf
IPR000719 Prot_kinase_dom
IPR017441 Protein_kinase_ATP_BS
IPR008271 Ser/Thr_kinase_AS

The PANTHER Classification System

More...
PANTHERi
PTHR24419:SF1 PTHR24419:SF1, 1 hit

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF00531 Death, 1 hit
PF00069 Pkinase, 1 hit

Simple Modular Architecture Research Tool; a protein domain database

More...
SMARTi
View protein in SMART
SM00220 S_TKc, 1 hit

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF47986 SSF47986, 1 hit
SSF56112 SSF56112, 1 hit

PROSITE; a protein domain and family database

More...
PROSITEi
View protein in PROSITE
PS00107 PROTEIN_KINASE_ATP, 1 hit
PS50011 PROTEIN_KINASE_DOM, 1 hit
PS00108 PROTEIN_KINASE_ST, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequence (1+)i

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

This entry has 1 described isoform and 1 potential isoform that is computationally mapped.Show allAlign All

Q2LGB3-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MAGGPGPGDP AVPGAQHFLY EVPPWVMCRF YKVMDALEPA DWCQFAALIV
60 70 80 90 100
RDQTELRLCE RSGQRTASVL WPWINRNARV ADLVRILTHL QLLRARDIIT
110 120 130 140 150
AWHPPAPLLP PSTTSLTPSS ISAPSEAAVP GHRKLPSLAS TFLSPAFPGS
160 170 180 190 200
QTHSDPELCP GPSPAAHQPP LPSPAPSSTK PSPESPMSLL PGAPSSSFCW
210 220 230 240 250
PLHEICQGTH DFSEELKIGE GGFGCVYRAV MRNTVYAVKR LKEEADLEWT
260 270 280 290 300
TVKQSFQTEV QQLSRFRHPN IVDFAGYCAQ SGFYCLVYGF LPNGSLEDRL
310 320 330 340 350
HVQTQAWPPL SWPQRLDILL GTARAIQFLH QDSPSLIHGD VKSSNVLLDE
360 370 380 390 400
RLMPKLGDFG LARLSRFTGA NPGQSSSVAR TRTVRGTLAY LPEEYVKTGR
410 420 430 440 450
LAVDTDTFSF GVVLLETLAG QRAVRMHGAQ PKYLKDLVEE EAEEAGVTLK
460 470 480 490 500
GTQTAVQGGP AADTWAALVA AQIYKKHLDP RPGPCPPQLG LALGQLACCC
510 520 530 540 550
LHRRAKRRPP MTQVYQTLEE LQVVVAGPCL ELEAASRSPP SPQENSYVST
560 570 580 590 600
SGSALSRASP WQPLAAPLGA QAQATDWPQK GANQPVESDE SVSDLSAALH
610 620 630 640 650
SWHLSPSCPA GPGAPSWVPA PFGQAACTQG GAARESSCGS GPGLQPTAVE
660 670 680 690 700
GPLLGSSMSS RPPQIVINPA RRKMLQKLAL YEDGVLDSLQ LLSSSSLPDS
710
GQDLQDRQGP EERDEFRS
Length:718
Mass (Da):77,397
Last modified:March 21, 2006 - v2
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:i3B364180697DB1F0
GO

<p>In eukaryotic reference proteomes, unreviewed entries that are likely to belong to the same gene are computationally mapped, based on gene identifiers from Ensembl, EnsemblGenomes and model organism databases.<p><a href='/help/gene_centric_isoform_mapping' target='_top'>More...</a></p>Computationally mapped potential isoform sequencesi

There is 1 potential isoform mapped to this entry.BLASTAlignShow allAdd to basket
EntryEntry nameProtein names
Gene namesLengthAnnotation
F1N593F1N593_BOVIN
Interleukin-1 receptor-associated k...
IRAK1
673Annotation score:

Annotation score:4 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
DQ319075 mRNA Translation: ABC47878.2

NCBI Reference Sequences

More...
RefSeqi
NP_001035645.1, NM_001040555.1

Genome annotation databases

Ensembl eukaryotic genome annotation project

More...
Ensembli
ENSBTAT00000021407; ENSBTAP00000021407; ENSBTAG00000016085

Database of genes from NCBI RefSeq genomes

More...
GeneIDi
533953

KEGG: Kyoto Encyclopedia of Genes and Genomes

More...
KEGGi
bta:533953

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
DQ319075 mRNA Translation: ABC47878.2
RefSeqiNP_001035645.1, NM_001040555.1

3D structure databases

SMRiQ2LGB3
ModBaseiSearch...

Protein-protein interaction databases

STRINGi9913.ENSBTAP00000021407

Proteomic databases

PaxDbiQ2LGB3
PRIDEiQ2LGB3

Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Genome annotation databases

EnsembliENSBTAT00000021407; ENSBTAP00000021407; ENSBTAG00000016085
GeneIDi533953
KEGGibta:533953

Organism-specific databases

Comparative Toxicogenomics Database

More...
CTDi
3654
VGNCiVGNC:30264 IRAK1

Phylogenomic databases

eggNOGiKOG1187 Eukaryota
COG0515 LUCA
GeneTreeiENSGT00940000160502
HOGENOMiHOG000015226
InParanoidiQ2LGB3
KOiK04730
OrthoDBi684563at2759

Gene expression databases

ExpressionAtlasiQ2LGB3 baseline and differential

Family and domain databases

CDDicd08794 Death_IRAK1, 1 hit
InterProiView protein in InterPro
IPR011029 DEATH-like_dom_sf
IPR000488 Death_domain
IPR035533 Death_IRAK1
IPR035536 IRAK1
IPR011009 Kinase-like_dom_sf
IPR000719 Prot_kinase_dom
IPR017441 Protein_kinase_ATP_BS
IPR008271 Ser/Thr_kinase_AS
PANTHERiPTHR24419:SF1 PTHR24419:SF1, 1 hit
PfamiView protein in Pfam
PF00531 Death, 1 hit
PF00069 Pkinase, 1 hit
SMARTiView protein in SMART
SM00220 S_TKc, 1 hit
SUPFAMiSSF47986 SSF47986, 1 hit
SSF56112 SSF56112, 1 hit
PROSITEiView protein in PROSITE
PS00107 PROTEIN_KINASE_ATP, 1 hit
PS50011 PROTEIN_KINASE_DOM, 1 hit
PS00108 PROTEIN_KINASE_ST, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiIRAK1_BOVIN
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: Q2LGB3
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: January 9, 2007
Last sequence update: March 21, 2006
Last modified: June 5, 2019
This is version 106 of the entry and version 2 of the sequence. See complete history.
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

<p>This section contains any relevant information that doesn’t fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

Complete proteome, Reference proteome

Documents

  1. SIMILARITY comments
    Index of protein domains and families
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again