Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 56 (12 Aug 2020)
Sequence version 1 (21 Mar 2006)
Previous versions | rss
Help videoAdd a publicationFeedback
Protein

Fe-S cluster assembly protein DRE2

Gene

DRE2

Organism
Chaetomium globosum (strain ATCC 6205 / CBS 148.51 / DSM 1962 / NBRC 6347 / NRRL 1970) (Soil fungus)
Status
Reviewed-Annotation score:

Annotation score:3 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the 'correct annotation' for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Protein inferred from homologyi <p>This indicates the type of evidence that supports the existence of the protein. Note that the 'protein existence' evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Component of the cytosolic iron-sulfur (Fe-S) protein assembly (CIA) machinery required for the maturation of extramitochondrial Fe-S proteins. Part of an electron transfer chain functioning in an early step of cytosolic Fe-S biogenesis, facilitating the de novo assembly of a [4Fe-4S] cluster on the scaffold complex CFD1-NBP35. Electrons are transferred to DRE2 from NADPH via the FAD- and FMN-containing protein TAH18. TAH18-DRE2 are also required for the assembly of the diferric tyrosyl radical cofactor of ribonucleotide reductase (RNR), probably by providing electrons for reduction during radical cofactor maturation in the catalytic small subunit RNR2.UniRule annotation

<p>This subsection of the 'Function' section provides information relevant to cofactors. A cofactor is any non-protein substance required for a protein to be catalytically active. Some cofactors are inorganic, such as the metal atoms zinc, iron, and copper in various oxidation states. Others, such as most vitamins, are organic.<p><a href='/help/cofactor' target='_top'>More...</a></p>Cofactori

Protein has several cofactor binding sites:

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/function%5Fsection">Function</a> section indicates at which position the protein binds a given metal ion. The nature of the metal is indicated in the 'Description' field.<p><a href='/help/metal' target='_top'>More...</a></p>Metal bindingi264Iron-sulfur (2Fe-2S)UniRule annotation1
Metal bindingi275Iron-sulfur (2Fe-2S)UniRule annotation1
Metal bindingi278Iron-sulfur (2Fe-2S)UniRule annotation1
Metal bindingi280Iron-sulfur (2Fe-2S)UniRule annotation1
Metal bindingi325Iron-sulfur (4Fe-4S)UniRule annotation1
Metal bindingi328Iron-sulfur (4Fe-4S)UniRule annotation1
Metal bindingi336Iron-sulfur (4Fe-4S)UniRule annotation1
Metal bindingi339Iron-sulfur (4Fe-4S)UniRule annotation1

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Ligand2Fe-2S, 4Fe-4S, Iron, Iron-sulfur, Metal-binding

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Fe-S cluster assembly protein DRE2UniRule annotation
Alternative name(s):
Anamorsin homologUniRule annotation
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: 'Name', 'Synonyms', 'Ordered locus names' and 'ORF names'.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:DRE2UniRule annotation
ORF Names:CHGG_07038
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiChaetomium globosum (strain ATCC 6205 / CBS 148.51 / DSM 1962 / NBRC 6347 / NRRL 1970) (Soil fungus)
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the 'taxonomic identifier' or 'taxid'.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri306901 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaFungiDikaryaAscomycotaPezizomycotinaSordariomycetesSordariomycetidaeSordarialesChaetomiaceaeChaetomium
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
  • UP000001056 <p>A UniProt <a href="http://www.uniprot.org/manual/proteomes%5Fmanual">proteome</a> can consist of several components.<br></br>The component name refers to the genomic component encoding a set of proteins.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Unassembled WGS sequence

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Extracellular region or secreted Cytosol Plasma membrane Cell wall Cytoskeleton Vacuole Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte & Seán O’Donoghue; Source: COMPARTMENTS

Keywords - Cellular componenti

Cytoplasm, Mitochondrion

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the 'PTM / Processing' section describes the extent of a polypeptide chain in the mature protein following processing or proteolytic cleavage.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00003248611 – 362Fe-S cluster assembly protein DRE2Add BLAST362

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction%5Fsection">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function%5Fsection">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

Monomer.

Interacts with TAH18.

Interacts with MIA40.

UniRule annotation

Protein-protein interaction databases

STRING: functional protein association networks

More...
STRINGi
38033.XP_001224694.1

<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

3D structure databases

SWISS-MODEL Repository - a database of annotated 3D protein structure models

More...
SMRi
Q2GYB6

Database of comparative protein structure models

More...
ModBasei
Search...

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Region

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the 'Family and Domains' section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni24 – 165N-terminal SAM-like domainUniRule annotationAdd BLAST142
Regioni166 – 254LinkerUniRule annotationAdd BLAST89
Regioni255 – 362Intrinsically disorderedUniRule annotationAdd BLAST108
Regioni264 – 280Fe-S binding site AUniRule annotationAdd BLAST17
Regioni325 – 339Fe-S binding site BUniRule annotationAdd BLAST15

Motif

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the 'Family and Domains' section describes a short (usually not more than 20 amino acids) conserved sequence motif of biological significance.<p><a href='/help/motif' target='_top'>More...</a></p>Motifi325 – 328Cx2C motif 1UniRule annotation4
Motifi336 – 339Cx2C motif 2UniRule annotation4

<p>This subsection of the 'Family and domains' section provides general information on the biological role of a domain. The term 'domain' is intended here in its wide acceptation, it may be a structural domain, a transmembrane region or a functional domain. Several domains are described in this subsection.<p><a href='/help/domain_cc' target='_top'>More...</a></p>Domaini

The C-terminal domain binds 2 Fe-S clusters but is otherwise mostly in an intrinsically disordered conformation.UniRule annotation
The N-terminal domain has structural similarity with S-adenosyl-L-methionine-dependent methyltransferases, but does not bind S-adenosyl-L-methionine. It is required for correct assembly of the 2 Fe-S clusters.UniRule annotation
The twin Cx2C motifs are involved in the recognition by the mitochondrial MIA40-ERV1 disulfide relay system. The formation of 2 disulfide bonds in the Cx2C motifs through dithiol/disulfide exchange reactions effectively traps the protein in the mitochondrial intermembrane space.UniRule annotation

<p>This subsection of the 'Family and domains' section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Belongs to the anamorsin family.UniRule annotation

Phylogenomic databases

evolutionary genealogy of genes: Non-supervised Orthologous Groups

More...
eggNOGi
KOG4020, Eukaryota

The HOGENOM Database of Homologous Genes from Fully Sequenced Organisms

More...
HOGENOMi
CLU_067152_1_0_1

InParanoid: Eukaryotic Ortholog Groups

More...
InParanoidi
Q2GYB6

Database of Orthologous Groups

More...
OrthoDBi
1588798at2759

Family and domain databases

HAMAP database of protein families

More...
HAMAPi
MF_03115, Anamorsin, 1 hit

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR007785, Anamorsin
IPR031838, Dre2_N

The PANTHER Classification System

More...
PANTHERi
PTHR13273, PTHR13273, 1 hit

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF05093, CIAPIN1, 1 hit
PF16803, DRE2_N, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence%5Flength">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences%5Fsection">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical%5Fand%5Fisoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

Q2GYB6-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MAPGLDLTPD FHPPTTTTTT TNNAPPQQRT LLLAPPTLAT HGEARLATLF
60 70 80 90 100
TTTYPRATTD LQMLDRLAAG LVTLPATTYD LVLVLTDPDG SRRAEAAALL
110 120 130 140 150
ADRAVWARLV PAVRAGGRVA SEEGGGEGTE FLGDQRVGRE AVLAGLVAGG
160 170 180 190 200
VGGFVKPEYA EEEAVPLRFG KKKAAAAAAA AVSSAGPAVG TVKVATATSA
210 220 230 240 250
GKKEEVGMVP PAVAAAAAAP AGVGFVDFSD DLDLDVEDDE DVIDEETLLT
260 270 280 290 300
EEDLWRPIQQ PPECQPQPGK KRRACKDCTC GLASRMEAED KARRAKADSD
310 320 330 340 350
LNTLKLKSED LNELDFTVQG KTGSCGSCYL GDAFRCSDCP YIGLPAFKPG
360
EEVKIVNNAI QL
Length:362
Mass (Da):37,904
Last modified:March 21, 2006 - v1
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:i614BAAF85AD5A5AF
GO

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
CH408033 Genomic DNA Translation: EAQ85785.1

NCBI Reference Sequences

More...
RefSeqi
XP_001224694.1, XM_001224693.1

Genome annotation databases

Ensembl fungal genome annotation project

More...
EnsemblFungii
EAQ85785; EAQ85785; CHGG_07038

Database of genes from NCBI RefSeq genomes

More...
GeneIDi
4393179

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
CH408033 Genomic DNA Translation: EAQ85785.1
RefSeqiXP_001224694.1, XM_001224693.1

3D structure databases

SMRiQ2GYB6
ModBaseiSearch...

Protein-protein interaction databases

STRINGi38033.XP_001224694.1

Genome annotation databases

EnsemblFungiiEAQ85785; EAQ85785; CHGG_07038
GeneIDi4393179

Phylogenomic databases

eggNOGiKOG4020, Eukaryota
HOGENOMiCLU_067152_1_0_1
InParanoidiQ2GYB6
OrthoDBi1588798at2759

Family and domain databases

HAMAPiMF_03115, Anamorsin, 1 hit
InterProiView protein in InterPro
IPR007785, Anamorsin
IPR031838, Dre2_N
PANTHERiPTHR13273, PTHR13273, 1 hit
PfamiView protein in Pfam
PF05093, CIAPIN1, 1 hit
PF16803, DRE2_N, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the 'Entry information' section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiDRE2_CHAGB
<p>This subsection of the 'Entry information' section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called 'Primary (citable) accession number'.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: Q2GYB6
<p>This subsection of the 'Entry information' section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification ('Last modified'). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical%5Fand%5Fisoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: March 18, 2008
Last sequence update: March 21, 2006
Last modified: August 12, 2020
This is version 56 of the entry and version 1 of the sequence. See complete history.
<p>This subsection of the 'Entry information' section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programFungal Protein Annotation Program

<p>This section contains any relevant information that doesn't fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

Reference proteome

Documents

  1. SIMILARITY comments
    Index of protein domains and families
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again