Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 66 (08 May 2019)
Sequence version 1 (05 Sep 2006)
Previous versions | rss
Other tutorials and videosHelp videoFeedback
Protein

Histone H3

Gene

HHT1

Organism
Phaeosphaeria nodorum (strain SN15 / ATCC MYA-4574 / FGSC 10173) (Glume blotch fungus) (Parastagonospora nodorum)
Status
Reviewed-Annotation score:

Annotation score:3 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Protein inferred from homologyi <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.

Caution

To ensure consistency between histone entries, we follow the 'Brno' nomenclature for histone modifications, with positions referring to those used in the literature for the 'closest' model organism. Due to slight variations in histone sequences between organisms and to the presence of initiator methionine in UniProtKB/Swiss-Prot sequences, the actual positions of modified amino acids in the sequence generally differ. In this entry the following conventions are used: H3K4me1/2/3 = mono-, di- and trimethylated Lys-5; H3K9ac = acetylated Lys-10; H3K9me1 = monomethylated Lys-10; H3S10ph = phosphorylated Ser-11; H3K14ac = acetylated Lys-15; H3K14me2 = dimethylated Lys-15; H3K18ac = acetylated Lys-19; H3K18me1 = monomethylated Lys-19; H3K23ac = acetylated Lys-24; H3K23me1 = monomethylated Lys-24; H3K27ac = acetylated Lys-28; H3K27me1/2/3 = mono-, di- and trimethylated Lys-28; H3K36ac = acetylated Lys-37; H3K36me1/2/3 = mono-, di- and trimethylated Lys-37; H3K56ac = acetylated Lys-57; H3K64ac = acetylated Lys-65; H3K79me1/2/3 = mono-, di- and trimethylated Lys-80.Curated

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionDNA-binding

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Histone H3
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:HHT1
ORF Names:SNOG_03319
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiPhaeosphaeria nodorum (strain SN15 / ATCC MYA-4574 / FGSC 10173) (Glume blotch fungus) (Parastagonospora nodorum)
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri321614 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaFungiDikaryaAscomycotaPezizomycotinaDothideomycetesPleosporomycetidaePleosporalesPleosporineaePhaeosphaeriaceaeParastagonospora
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
  • UP000001055 <p>A UniProt <a href="http://www.uniprot.org/manual/proteomes_manual">proteome</a> can consist of several components. <br></br>The component name refers to the genomic component encoding a set of proteins.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Unassembled WGS sequence

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Extracellular region or secreted Cytosol Plasma membrane Cell wall Cytoskeleton Vacuole Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte & Seán O’Donoghue; Source: COMPARTMENTS

Keywords - Cellular componenti

Chromosome, Nucleosome core, Nucleus

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section indicates that the initiator methionine is cleaved from the mature protein.<p><a href='/help/init_met' target='_top'>More...</a></p>Initiator methionineiRemovedBy similarity
<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00002977502 – 136Histone H3Add BLAST135

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei5N6,N6,N6-trimethyllysine; alternateBy similarity1
Modified residuei5N6,N6-dimethyllysine; alternateBy similarity1
Modified residuei5N6-methyllysine; alternateBy similarity1
Modified residuei10N6-acetyllysine; alternateBy similarity1
Modified residuei10N6-methyllysine; alternateBy similarity1
Modified residuei11PhosphoserineBy similarity1
Modified residuei15N6,N6-dimethyllysine; alternateBy similarity1
Modified residuei15N6-acetyllysine; alternateBy similarity1
Modified residuei19N6-acetyllysine; alternateBy similarity1
Modified residuei19N6-methyllysine; alternateBy similarity1
Modified residuei24N6-acetyllysine; alternateBy similarity1
Modified residuei24N6-methyllysine; alternateBy similarity1
Modified residuei28N6,N6,N6-trimethyllysine; alternateBy similarity1
Modified residuei28N6,N6-dimethyllysine; alternateBy similarity1
Modified residuei28N6-acetyllysine; alternateBy similarity1
Modified residuei28N6-methyllysine; alternateBy similarity1
Modified residuei37N6,N6,N6-trimethyllysine; alternateBy similarity1
Modified residuei37N6,N6-dimethyllysine; alternateBy similarity1
Modified residuei37N6-acetyllysine; alternateBy similarity1
Modified residuei37N6-methyllysine; alternateBy similarity1
Modified residuei57N6-acetyllysineBy similarity1
Modified residuei65N6-acetyllysineBy similarity1
Modified residuei80N6,N6,N6-trimethyllysine; alternateBy similarity1
Modified residuei80N6,N6-dimethyllysine; alternateBy similarity1
Modified residuei80N6-methyllysine; alternateBy similarity1

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

Phosphorylated to form H3S10ph. H3S10ph promotes subsequent H3K14ac formation and is required for transcriptional activation through TBP recruitment to the promoters (By similarity).By similarity
Mono-, di- and trimethylated by the COMPASS complex to form H3K4me1/2/3. H3K4me activates gene expression by regulating transcription elongation and plays a role in telomere length maintenance. H3K4me enrichment correlates with transcription levels, and occurs in a 5' to 3' gradient with H3K4me3 enrichment at the 5'-end of genes, shifting to H3K4me2 and then H3K4me1. Methylated by SET2 to form H3K36me. H3K36me represses gene expression. Methylated by DOT1 to form H3K79me. H3K79me is required for association of SIR proteins with telomeric regions and for telomeric silencing. The COMPASS-mediated formation of H3K4me2/3 and the DOT1-mediated formation of H3K79me require H2BK123ub1 (By similarity).By similarity
Acetylation of histone H3 leads to transcriptional activation. H3K14ac formation by GCN5 is promoted by H3S10ph. H3K14ac can also be formed by ESA1. H3K56ac formation occurs predominantly in newly synthesized H3 molecules during G1, S and G2/M of the cell cycle and may be involved in DNA repair (By similarity).By similarity

Keywords - PTMi

Acetylation, Methylation, Phosphoprotein

Proteomic databases

PRoteomics IDEntifications database

More...
PRIDEi
Q0UY45

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA.

GO - Molecular functioni

<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

3D structure databases

SWISS-MODEL Repository - a database of annotated 3D protein structure models

More...
SMRi
Q0UY45

Database of comparative protein structure models

More...
ModBasei
Search...

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

<p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Belongs to the histone H3 family.Curated

Phylogenomic databases

InParanoid: Eukaryotic Ortholog Groups

More...
InParanoidi
Q0UY45

Identification of Orthologs from Complete Genome Data

More...
OMAi
PNTMART

Family and domain databases

Gene3D Structural and Functional Annotation of Protein Families

More...
Gene3Di
1.10.20.10, 1 hit

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR009072 Histone-fold
IPR007125 Histone_H2A/H2B/H3
IPR000164 Histone_H3/CENP-A

The PANTHER Classification System

More...
PANTHERi
PTHR11426 PTHR11426, 1 hit

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF00125 Histone, 1 hit

Protein Motif fingerprint database; a protein domain database

More...
PRINTSi
PR00622 HISTONEH3

Simple Modular Architecture Research Tool; a protein domain database

More...
SMARTi
View protein in SMART
SM00428 H3, 1 hit

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF47113 SSF47113, 1 hit

PROSITE; a protein domain and family database

More...
PROSITEi
View protein in PROSITE
PS00322 HISTONE_H3_1, 1 hit
PS00959 HISTONE_H3_2, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is in its mature form or if it represents the precursor.<p><a href='/help/sequence_processing' target='_top'>More...</a></p>Sequence processingi: The displayed sequence is further processed into a mature form.

Q0UY45-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MARTKQTARK STGGKAPRKQ LASKAARKSA PSTGGVKKPH RYKPGTVALR
60 70 80 90 100
EIRRYQKSTE LLIRKLPFQR LVREIAQDFK SDLRFQSSAI GALQESVEAY
110 120 130
LVSLFEDTNL CAIHAKRVTI QSKDIQLARR LRGERG
Length:136
Mass (Da):15,319
Last modified:September 5, 2006 - v1
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:iCCC51E808E7064D7
GO

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
CH445328 Genomic DNA No translation available.

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
CH445328 Genomic DNA No translation available.

3D structure databases

SMRiQ0UY45
ModBaseiSearch...

Proteomic databases

PRIDEiQ0UY45

Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Phylogenomic databases

InParanoidiQ0UY45
OMAiPNTMART

Family and domain databases

Gene3Di1.10.20.10, 1 hit
InterProiView protein in InterPro
IPR009072 Histone-fold
IPR007125 Histone_H2A/H2B/H3
IPR000164 Histone_H3/CENP-A
PANTHERiPTHR11426 PTHR11426, 1 hit
PfamiView protein in Pfam
PF00125 Histone, 1 hit
PRINTSiPR00622 HISTONEH3
SMARTiView protein in SMART
SM00428 H3, 1 hit
SUPFAMiSSF47113 SSF47113, 1 hit
PROSITEiView protein in PROSITE
PS00322 HISTONE_H3_1, 1 hit
PS00959 HISTONE_H3_2, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiH3_PHANO
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: Q0UY45
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: August 21, 2007
Last sequence update: September 5, 2006
Last modified: May 8, 2019
This is version 66 of the entry and version 1 of the sequence. See complete history.
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programFungal Protein Annotation Program

<p>This section contains any relevant information that doesn’t fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

Complete proteome, Reference proteome

Documents

  1. SIMILARITY comments
    Index of protein domains and families
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again