UniProtKB - Q07889 (SOS1_HUMAN)
Your basket is currently empty. i <p>When browsing through different UniProt proteins, you can use the 'basket' to save them, so that you can back to find or analyse them later.<p><a href='/help/basket' target='_top'>More...</a></p>
Select item(s) and click on "Add to basket" to create your own collection here
(400 entries max)
>sp|Q07889|SOS1_HUMAN Son of sevenless homolog 1 OS=Homo sapiens OX=9606 GN=SOS1 PE=1 SV=1 MQAQQLPYEFFSEENAPKWRGLLVPALKKVQGQVHPTLESNDDALQYVEELILQLLNMLC QAQPRSASDVEERVQKSFPHPIDKWAIADAQSAIEKRKRRNPLSLPVEKIHPLLKEVLGY KIDHQVSVYIVAVLEYISADILKLVGNYVRNIRHYEITKQDIKVAMCADKVLMDMFHQDV EDINILSLTDEEPSTSGEQTYYDLVKAFMAEIRQYIRELNLIIKVFREPFVSNSKLFSAN DVENIFSRIVDIHELSVKLLGHIEDTVEMTDEGSPHPLVGSCFEDLAEELAFDPYESYAR DILRPGFHDRFLSQLSKPGAALYLQSIGEGFKEAVQYVLPRLLLAPVYHCLHYFELLKQL EEKSEDQEDKECLKQAITALLNVQSGMEKICSKSLAKRRLSESACRFYSQQMKGKQLAIK KMNEIQKNIDGWEGKDIGQCCNEFIMEGTLTRVGAKHERHIFLFDGLMICCKSNHGQPRL PGASNAEYRLKEKFFMRKVQINDKDDTNEYKHAFEIILKDENSVIFSAKSAEEKNNWMAA LISLQYRSTLERMLDVTMLQEEKEEQMRLPSADVYRFAEPDSEENIIFEENMQPKAGIPI IKAGTVIKLIERLTYHMYADPNFVRTFLTTYRSFCKPQELLSLIIERFEIPEPEPTEADR IAIENGDQPLSAELKRFRKEYIQPVQLRVLNVCRHWVEHHFYDFERDAYLLQRMEEFIGT VRGKAMKKWVESITKIIQRKKIARDNGPGHNITFQSSPPTVEWHISRPGHIETFDLLTLH PIEIARQLTLLESDLYRAVQPSELVGSVWTKEDKEINSPNLLKMIRHTTNLTLWFEKCIV ETENLEERVAVVSRIIEILQVFQELNNFNGVLEVVSAMNSSPVYRLDHTFEQIPSRQKKI LEEAHELSEDHYKKYLAKLRSINPPCVPFFGIYLTNILKTEEGNPEVLKRHGKELINFSK RRKVAEITGEIQQYQNQPYCLRVESDIKRFFENLNPMGNSMEKEFTDYLFNKSLEIEPRN PKPLPRFPKKYSYPLKSPGVRPSNPRPGTMRHPTPLQQEPRKISYSRIPESETESTASAP NSPRTPLTPPPASGASSTTDVCSVFDSDHSSPFHSSNDTVFIQVTLPHGPRSASVSSISL TKGTDEVPVPPPVPPRRRPESAPAESSPSKIMSKHLDSPPAIPPRQPTSKAYSPRYSISD RTSISDPPESPPLLPPREPVRTPDVFSSSPLHLQPPPLGKKSDHGNAFFPNSPSPFTPPP PQTPSPHGTRRHLPSPPLTQEVDLHSIAGPPVPPRQSTSQHIPKLPPKTYKREHTHPSMH RDGPPLLENAHSSCommunity curation ()Add a publicationFeedback
Son of sevenless homolog 1
SOS1
Annotation score:5 out of 5
<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the 'correct annotation' for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>-Experimental evidence at protein leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the 'protein existence' evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>Select a section on the left to see content.
<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni
Promotes the exchange of Ras-bound GDP by GTP (PubMed:8493579).
Probably by promoting Ras activation, regulates phosphorylation of MAP kinase MAPK3 in response to EGF (PubMed:17339331).
Catalytic component of a trimeric complex that participates in transduction of signals from Ras to Rac by promoting the Rac-specific guanine nucleotide exchange factor (GEF) activity (By similarity).
By similarity<p>Manually curated information which has been propagated from a related experimentally characterized protein.</p> <p><a href="/manual/evidences#ECO:0000250">More...</a></p> Manual assertion inferred from sequence similarity toi
2 Publications<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More...</a></p> Manual assertion based on experiment ini
- Ref.1"Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2."
Chardin P., Camonis J.H., Gale N.W., van Aelst L., Wigler M.H., Bar-Sagi D.
Science 260:1338-1343(1993) [PubMed] [Europe PMC] [Abstract]Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), FUNCTION, INTERACTION WITH GRB2. - Ref.8"An activating mutation in sos-1 identifies its Dbl domain as a critical inhibitor of the epidermal growth factor receptor pathway during Caenorhabditis elegans vulval development."
Modzelewska K., Elgort M.G., Huang J., Jongeward G., Lauritzen A., Yoon C.H., Sternberg P.W., Moghal N.
Mol. Cell. Biol. 27:3695-3707(2007) [PubMed] [Europe PMC] [Abstract]Cited for: FUNCTION, MUTAGENESIS OF CYS-282.
<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni
- DNA binding Source: InterPro
- GTPase activator activity Source: ProtInc
<p>Traceable Author Statement</p>
<p>Used for information from review articles where the original experiments are traceable through that article and also for information from text books or dictionaries.</p>
<p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#tas">GO evidence code guide</a></p>
Traceable author statementi
- Ref.18"Crystal structure of the Dbl and pleckstrin homology domains from the human Son of sevenless protein."
Soisson S.M., Nimnual A.S., Uy M., Bar-Sagi D., Kuriyan J.
Cell 95:259-268(1998) [PubMed] [Europe PMC] [Abstract]Cited for: X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) OF 198-551.
- guanyl-nucleotide exchange factor activity Source: ReactomeInferred from experimenti
- "p21ras activation via hemopoietin receptors and c-kit requires tyrosine kinase activity but not tyrosine phosphorylation of p21ras GTPase-activating protein."
Duronio V., Welham M.J., Abraham S., Dryden P., Schrader J.W.
Proc Natl Acad Sci U S A 89:1587-1591(1992) [PubMed] [Europe PMC] [Abstract] - "Stem cell factor and its receptor c-Kit as targets for inflammatory diseases."
Reber L., Da Silva C.A., Frossard N.
Eur J Pharmacol 533:327-340(2006) [PubMed] [Europe PMC] [Abstract] - "The motogenic and mitogenic responses to HGF are amplified by the Shc adaptor protein."
Pelicci G., Giordano S., Zhen Z., Salcini A.E., Lanfrancone L., Bardelli A., Panayotou G., Waterfield M.D., Ponzetto C., Pelicci P.G.
Oncogene 10:1631-1638(1995) [PubMed] [Europe PMC] [Abstract]
- protein heterodimerization activity Source: InterPro
- SH3 domain binding Source: Ensembl
GO - Biological processi
- axon guidance Source: Reactome
- B cell homeostasis Source: Ensembl
- blood vessel morphogenesis Source: Ensembl
- cardiac atrium morphogenesis Source: Ensembl
- cytokine-mediated signaling pathway Source: Reactome
- epidermal growth factor receptor signaling pathway Source: Reactome
- eyelid development in camera-type eye Source: Ensembl
- Fc-epsilon receptor signaling pathway Source: Reactome
- hair follicle development Source: Ensembl
- heart trabecula morphogenesis Source: Ensembl
- leukocyte migration Source: Reactome
- midbrain morphogenesis Source: Ensembl
- multicellular organism growth Source: Ensembl
- neurotrophin TRK receptor signaling pathway Source: Ensembl
- pericardium morphogenesis Source: Ensembl
- positive regulation of epidermal growth factor receptor signaling pathway Source: Ensembl
- positive regulation of GTPase activity Source: GO_Central
<p>Inferred from Biological aspect of Ancestor</p>
<p>A type of phylogenetic evidence whereby an aspect of a descendent is inferred through the characterization of an aspect of a ancestral gene.</p>
<p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#iba">GO evidence code guide</a></p>
Inferred from biological aspect of ancestori
- "Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium."
Gaudet P., Livstone M.S., Lewis S.E., Thomas P.D.
Brief Bioinform 12:449-462(2011) [PubMed] [Europe PMC] [Abstract]
- positive regulation of small GTPase mediated signal transduction Source: Ensembl
- Ras protein signal transduction Source: ComplexPortal
<p>Inferred from Direct Assay</p>
<p>Used to indicate a direct assay for the function, process or component indicated by the GO term.</p>
<p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#ida">GO evidence code guide</a></p>
Inferred from direct assayi
- "Wnt4 inhibits cell motility induced by oncogenic Ras."
De Menna M., D'Amato V., Ferraro A., Fusco A., Di Lauro R., Garbi C., De Vita G.
Oncogene 32:4110-4119(2013) [PubMed] [Europe PMC] [Abstract]
- regulation of cell population proliferation Source: ComplexPortalInferred from direct assayi
- "Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a."
Serrano M., Lin A.W., McCurrach M.E., Beach D., Lowe S.W.
Cell 88:593-602(1997) [PubMed] [Europe PMC] [Abstract]
- regulation of MAP kinase activity Source: ComplexPortalInferred from direct assayi
- "Wnt4 inhibits cell motility induced by oncogenic Ras."
De Menna M., D'Amato V., Ferraro A., Fusco A., Di Lauro R., Garbi C., De Vita G.
Oncogene 32:4110-4119(2013) [PubMed] [Europe PMC] [Abstract]
- regulation of pro-B cell differentiation Source: Ensembl
- regulation of T cell differentiation in thymus Source: Ensembl
- regulation of T cell proliferation Source: Ensembl
- regulation of transcription by RNA polymerase II Source: ComplexPortalInferred from direct assayi
- "Wnt4 inhibits cell motility induced by oncogenic Ras."
De Menna M., D'Amato V., Ferraro A., Fusco A., Di Lauro R., Garbi C., De Vita G.
Oncogene 32:4110-4119(2013) [PubMed] [Europe PMC] [Abstract]
- roof of mouth development Source: Ensembl
- signal transduction Source: ProtInc
<p>Non-traceable Author Statement</p>
<p>Used for statements in the abstract, introduction or discussion of a paper that cannot be traced back to another publication.</p>
<p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#nas">GO evidence code guide</a></p>
Non-traceable author statementi
- Ref.1"Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2."
Chardin P., Camonis J.H., Gale N.W., van Aelst L., Wigler M.H., Bar-Sagi D.
Science 260:1338-1343(1993) [PubMed] [Europe PMC] [Abstract]Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), FUNCTION, INTERACTION WITH GRB2.
- vitellogenesis Source: Ensembl
<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi
Molecular function | Guanine-nucleotide releasing factor |
Enzyme and pathway databases
Pathway Commons web resource for biological pathway data More...PathwayCommonsi | Q07889 |
Reactome - a knowledgebase of biological pathways and processes More...Reactomei | R-HSA-112412, SOS-mediated signalling R-HSA-1236382, Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants R-HSA-1250196, SHC1 events in ERBB2 signaling R-HSA-1250347, SHC1 events in ERBB4 signaling R-HSA-1433557, Signaling by SCF-KIT R-HSA-1433559, Regulation of KIT signaling R-HSA-167044, Signalling to RAS R-HSA-179812, GRB2 events in EGFR signaling R-HSA-180336, SHC1 events in EGFR signaling R-HSA-186763, Downstream signal transduction R-HSA-193648, NRAGE signals death through JNK R-HSA-1963640, GRB2 events in ERBB2 signaling R-HSA-210993, Tie2 Signaling R-HSA-2179392, EGFR Transactivation by Gastrin R-HSA-2424491, DAP12 signaling R-HSA-2428933, SHC-related events triggered by IGF1R R-HSA-2730905, Role of LAT2/NTAL/LAB on calcium mobilization R-HSA-2871796, FCERI mediated MAPK activation R-HSA-2871809, FCERI mediated Ca+2 mobilization R-HSA-354194, GRB2:SOS provides linkage to MAPK signaling for Integrins R-HSA-375165, NCAM signaling for neurite out-growth R-HSA-416482, G alpha (12/13) signalling events R-HSA-428540, Activation of RAC1 R-HSA-5637810, Constitutive Signaling by EGFRvIII R-HSA-5654688, SHC-mediated cascade:FGFR1 R-HSA-5654693, FRS-mediated FGFR1 signaling R-HSA-5654699, SHC-mediated cascade:FGFR2 R-HSA-5654700, FRS-mediated FGFR2 signaling R-HSA-5654704, SHC-mediated cascade:FGFR3 R-HSA-5654706, FRS-mediated FGFR3 signaling R-HSA-5654712, FRS-mediated FGFR4 signaling R-HSA-5654719, SHC-mediated cascade:FGFR4 R-HSA-5655253, Signaling by FGFR2 in disease R-HSA-5655291, Signaling by FGFR4 in disease R-HSA-5655302, Signaling by FGFR1 in disease R-HSA-5673001, RAF/MAP kinase cascade R-HSA-74749, Signal attenuation R-HSA-74751, Insulin receptor signalling cascade R-HSA-8851805, MET activates RAS signaling R-HSA-8853334, Signaling by FGFR3 fusions in cancer R-HSA-8853338, Signaling by FGFR3 point mutants in cancer R-HSA-8853659, RET signaling R-HSA-8983432, Interleukin-15 signaling R-HSA-9013149, RAC1 GTPase cycle R-HSA-9026519, Activated NTRK2 signals through RAS R-HSA-9027284, Erythropoietin activates RAS R-HSA-9028731, Activated NTRK2 signals through FRS2 and FRS3 R-HSA-9034864, Activated NTRK3 signals through RAS R-HSA-912526, Interleukin receptor SHC signaling R-HSA-9607240, FLT3 Signaling R-HSA-9634285, Constitutive Signaling by Overexpressed ERBB2 R-HSA-9664565, Signaling by ERBB2 KD Mutants R-HSA-9665348, Signaling by ERBB2 ECD mutants R-HSA-9665686, Signaling by ERBB2 TMD/JMD mutants R-HSA-9670439, Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT mutants R-HSA-9673767, Signaling by PDGFRA transmembrane, juxtamembrane and kinase domain mutants R-HSA-9673770, Signaling by PDGFRA extracellular domain mutants R-HSA-9703465, Signaling by FLT3 fusion proteins R-HSA-9703648, Signaling by FLT3 ITD and TKD mutants R-HSA-983695, Antigen activates B Cell Receptor (BCR) leading to generation of second messengers |
SignaLink: a signaling pathway resource with multi-layered regulatory networks More...SignaLinki | Q07889 |
SIGNOR Signaling Network Open Resource More...SIGNORi | Q07889 |
<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi | Recommended name: Son of sevenless homolog 1Short name: SOS-1 |
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: 'Name', 'Synonyms', 'Ordered locus names' and 'ORF names'.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi | Name:SOS1 |
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>Organismi | Homo sapiens (Human) |
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the 'taxonomic identifier' or 'taxid'.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri | 9606 [NCBI] |
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineagei | cellular organisms › Eukaryota › Opisthokonta › Metazoa › Eumetazoa › Bilateria › Deuterostomia › Chordata › Craniata › Vertebrata › Gnathostomata › Teleostomi › Euteleostomi › Sarcopterygii › Dipnotetrapodomorpha › Tetrapoda › Amniota › Mammalia › Theria › Eutheria › Boreoeutheria › Euarchontoglires › Primates › Haplorrhini › Simiiformes › Catarrhini › Hominoidea › Hominidae › Homininae › Homo |
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi |
|
Organism-specific databases
Human Gene Nomenclature Database More...HGNCi | HGNC:11187, SOS1 |
Online Mendelian Inheritance in Man (OMIM) More...MIMi | 182530, gene |
neXtProt; the human protein knowledge platform More...neXtProti | NX_Q07889 |
Eukaryotic Pathogen, Vector and Host Database Resources More...VEuPathDBi | HostDB:ENSG00000115904 |
<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi
Cytosol
- cytosol Source: Reactome
Plasma Membrane
- plasma membrane Source: GO_CentralInferred from biological aspect of ancestori
- "Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium."
Gaudet P., Livstone M.S., Lewis S.E., Thomas P.D.
Brief Bioinform 12:449-462(2011) [PubMed] [Europe PMC] [Abstract]
- plasma membrane Source: GO_CentralInferred from biological aspect of ancestori
Other locations
- cytoplasm Source: CAFAInferred from direct assayi
- "Structural basis for the transforming activity of human cancer-related signaling adaptor protein CRK."
Kobashigawa Y., Sakai M., Naito M., Yokochi M., Kumeta H., Makino Y., Ogura K., Tanaka S., Inagaki F.
Nat. Struct. Mol. Biol. 14:503-510(2007) [PubMed] [Europe PMC] [Abstract]
- GTPase complex Source: ComplexPortal
<p>Inferred from Physical Interaction</p>
<p>Covers physical interactions between the gene product of interest and another molecule (or ion, or complex).</p>
<p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#ipi">GO evidence code guide</a></p>
Inferred from physical interactioni
- "Small molecule binding sites on the Ras:SOS complex can be exploited for inhibition of Ras activation."
Winter J.J., Anderson M., Blades K., Brassington C., Breeze A.L., Chresta C., Embrey K., Fairley G., Faulder P., Finlay M.R., Kettle J.G., Nowak T., Overman R., Patel S.J., Perkins P., Spadola L., Tart J., Tucker J.A., Wrigley G.
J Med Chem 58:2265-2274(2015) [PubMed] [Europe PMC] [Abstract]
- neuronal cell body Source: Ensembl
- postsynaptic density Source: Ensembl
- cytoplasm Source: CAFAInferred from direct assayi
<p>This section provides information on the disease(s) and phenotype(s) associated with a protein.<p><a href='/help/pathology_and_biotech_section' target='_top'>More...</a></p>Pathology & Biotechi
<p>This subsection of the 'Pathology and Biotech' section provides information on the disease(s) associated with genetic variations in a given protein. The information is extracted from the scientific literature and diseases that are also described in the <a href="http://www.ncbi.nlm.nih.gov/sites/entrez?db=omim">OMIM</a> database are represented with a <a href="http://www.uniprot.org/diseases">controlled vocabulary</a> in the following way:<p><a href='/help/involvement_in_disease' target='_top'>More...</a></p>Involvement in diseasei
Fibromatosis, gingival, 1 (GINGF1)1 PublicationManual assertion based on experiment ini
- Ref.19"A mutation in the SOS1 gene causes hereditary gingival fibromatosis type 1."
Hart T.C., Zhang Y., Gorry M.C., Hart P.S., Cooper M., Marazita M.L., Marks J.M., Cortelli J.R., Pallos D.
Am. J. Hum. Genet. 70:943-954(2002) [PubMed] [Europe PMC] [Abstract]Cited for: INVOLVEMENT IN GINGF1, TISSUE SPECIFICITY.
Hart T.C., Zhang Y., Gorry M.C., Hart P.S., Cooper M., Marazita M.L., Marks J.M., Cortelli J.R., Pallos D.
Am. J. Hum. Genet. 70:943-954(2002) [PubMed] [Europe PMC] [Abstract]
Noonan syndrome 4 (NS4)8 PublicationsManual assertion based on experiment ini
- Ref.20"Germline gain-of-function mutations in SOS1 cause Noonan syndrome."
Roberts A.E., Araki T., Swanson K.D., Montgomery K.T., Schiripo T.A., Joshi V.A., Li L., Yassin Y., Tamburino A.M., Neel B.G., Kucherlapati R.S.
Nat. Genet. 39:70-74(2007) [PubMed] [Europe PMC] [Abstract]Cited for: VARIANTS NS4 LYS-266; ARG-269; TYR-309; CYS-337; ARG-434; ARG-548; GLY-552 AND LYS-846, VARIANT LEU-655. - Ref.21"Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome."
Tartaglia M., Pennacchio L.A., Zhao C., Yadav K.K., Fodale V., Sarkozy A., Pandit B., Oishi K., Martinelli S., Schackwitz W., Ustaszewska A., Martin J., Bristow J., Carta C., Lepri F., Neri C., Vasta I., Gibson K. , Curry C.J., Lopez Siguero J.P., Digilio M.C., Zampino G., Dallapiccola B., Bar-Sagi D., Gelb B.D.
Nat. Genet. 39:75-79(2007) [PubMed] [Europe PMC] [Abstract]Cited for: VARIANTS NS4 LYS-108; ARG-269; ARG-432; LYS-433; TYR-441; ARG-548; PRO-550; GLY-552; LYS-552; SER-552; HIS-702; LEU-729; PHE-733 AND LYS-846, VARIANTS LEU-655; ARG-977 AND ARG-1320, CHARACTERIZATION OF VARIANTS NS4 GLY-552 AND LEU-729. - Ref.22"PTPN11, SOS1, KRAS, and RAF1 gene analysis, and genotype-phenotype correlation in Korean patients with Noonan syndrome."
Ko J.M., Kim J.M., Kim G.H., Yoo H.W.
J. Hum. Genet. 53:999-1006(2008) [PubMed] [Europe PMC] [Abstract]Cited for: VARIANT NS4 GLU-170. - Ref.23"SOS1: a new player in the Noonan-like/multiple giant cell lesion syndrome."
Hanna N., Parfait B., Talaat I.M., Vidaud M., Elsedfy H.H.
Clin. Genet. 75:568-571(2009) [PubMed] [Europe PMC] [Abstract]Cited for: VARIANT NS4 ARG-432. - Ref.24"Noonan syndrome associated with both a new Jnk-activating familial SOS1 and a de novo RAF1 mutations."
Longoni M., Moncini S., Cisternino M., Morella I.M., Ferraiuolo S., Russo S., Mannarino S., Brazzelli V., Coi P., Zippel R., Venturin M., Riva P.
Am. J. Med. Genet. A 152:2176-2184(2010) [PubMed] [Europe PMC] [Abstract]Cited for: VARIANTS NS4 THR-269; ARG-477 AND HIS-702, VARIANT GLN-497, CHARACTERIZATION OF VARIANT GLN-497. - Ref.25"Two cases of Noonan syndrome with severe respiratory and gastroenteral involvement and the SOS1 mutation F623I."
Fabretto A., Kutsche K., Harmsen M.B., Demarini S., Gasparini P., Fertz M.C., Zenker M.
Eur. J. Med. Genet. 53:322-324(2010) [PubMed] [Europe PMC] [Abstract]Cited for: VARIANT NS4 ILE-623. - Ref.26"Tumor spectrum in children with Noonan syndrome and SOS1 or RAF1 mutations."
Denayer E., Devriendt K., de Ravel T., Van Buggenhout G., Smeets E., Francois I., Sznajer Y., Craen M., Leventopoulos G., Mutesa L., Vandecasseye W., Massa G., Kayserili H., Sciot R., Fryns J.P., Legius E.
Genes Chromosomes Cancer 49:242-252(2010) [PubMed] [Europe PMC] [Abstract]Cited for: VARIANTS NS4 ARG-102; GLU-170; LYS-266; THR-269; ALA-378; LYS-433 AND GLY-552, VARIANTS VAL-569 AND LEU-655. - Ref.27"SOS1 mutations in Noonan syndrome: molecular spectrum, structural insights on pathogenic effects, and genotype-phenotype correlations."
Lepri F., De Luca A., Stella L., Rossi C., Baldassarre G., Pantaleoni F., Cordeddu V., Williams B.J., Dentici M.L., Caputo V., Venanzi S., Bonaguro M., Kavamura I., Faienza M.F., Pilotta A., Stanzial F., Faravelli F., Gabrielli O. , Marino B., Neri G., Silengo M.C., Ferrero G.B., Torrrente I., Selicorni A., Mazzanti L., Digilio M.C., Zampino G., Dallapiccola B., Gelb B.D., Tartaglia M.
Hum. Mutat. 32:760-772(2011) [PubMed] [Europe PMC] [Abstract]Cited for: VARIANTS NS4 LYS-108; ARG-112; GLU-170; THR-252; LYS-266; THR-269; ARG-269; VAL-422; LYS-424; 427-LYS--ASP-430 DELINS ASN; ARG-432; 432-TRP-GLU-433 DEL; LYS-433; ARG-434; LYS-434; THR-437; TYR-441; ARG-477; ARG-478; ARG-482; ARG-490; GLN-497; ARG-548; LYS-549; GLY-552; LYS-552; MET-552; THR-552; SER-552; 554-LEU--MET-558 DELINS LYS; PHE-733; LYS-846 AND ARG-894, VARIANTS ALA-37; LEU-478; VAL-569; LEU-655; THR-708; THR-784; SER-1011; LYS-1131; ILE-1140; ALA-1257 AND ARG-1320.
Roberts A.E., Araki T., Swanson K.D., Montgomery K.T., Schiripo T.A., Joshi V.A., Li L., Yassin Y., Tamburino A.M., Neel B.G., Kucherlapati R.S.
Nat. Genet. 39:70-74(2007) [PubMed] [Europe PMC] [Abstract]
Tartaglia M., Pennacchio L.A., Zhao C., Yadav K.K., Fodale V., Sarkozy A., Pandit B., Oishi K., Martinelli S., Schackwitz W., Ustaszewska A., Martin J., Bristow J., Carta C., Lepri F., Neri C., Vasta I., Gibson K. , Curry C.J., Lopez Siguero J.P., Digilio M.C., Zampino G., Dallapiccola B., Bar-Sagi D., Gelb B.D.
Nat. Genet. 39:75-79(2007) [PubMed] [Europe PMC] [Abstract]
Ko J.M., Kim J.M., Kim G.H., Yoo H.W.
J. Hum. Genet. 53:999-1006(2008) [PubMed] [Europe PMC] [Abstract]
Hanna N., Parfait B., Talaat I.M., Vidaud M., Elsedfy H.H.
Clin. Genet. 75:568-571(2009) [PubMed] [Europe PMC] [Abstract]
Longoni M., Moncini S., Cisternino M., Morella I.M., Ferraiuolo S., Russo S., Mannarino S., Brazzelli V., Coi P., Zippel R., Venturin M., Riva P.
Am. J. Med. Genet. A 152:2176-2184(2010) [PubMed] [Europe PMC] [Abstract]
Fabretto A., Kutsche K., Harmsen M.B., Demarini S., Gasparini P., Fertz M.C., Zenker M.
Eur. J. Med. Genet. 53:322-324(2010) [PubMed] [Europe PMC] [Abstract]
Denayer E., Devriendt K., de Ravel T., Van Buggenhout G., Smeets E., Francois I., Sznajer Y., Craen M., Leventopoulos G., Mutesa L., Vandecasseye W., Massa G., Kayserili H., Sciot R., Fryns J.P., Legius E.
Genes Chromosomes Cancer 49:242-252(2010) [PubMed] [Europe PMC] [Abstract]
Lepri F., De Luca A., Stella L., Rossi C., Baldassarre G., Pantaleoni F., Cordeddu V., Williams B.J., Dentici M.L., Caputo V., Venanzi S., Bonaguro M., Kavamura I., Faienza M.F., Pilotta A., Stanzial F., Faravelli F., Gabrielli O. , Marino B., Neri G., Silengo M.C., Ferrero G.B., Torrrente I., Selicorni A., Mazzanti L., Digilio M.C., Zampino G., Dallapiccola B., Gelb B.D., Tartaglia M.
Hum. Mutat. 32:760-772(2011) [PubMed] [Europe PMC] [Abstract]
Feature key | Position(s) | DescriptionActions | Graphical view | Length |
---|---|---|---|---|
<p>This subsection of the 'Sequence' section describes natural variant(s) of the protein sequence.<p><a href='/help/variant' target='_top'>More...</a></p>Natural variantiVAR_066032 | 102 | P → R in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030423 | 108 | E → K in NS4. 2 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066033 | 112 | P → R in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066034 | 170 | K → E in NS4. 3 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066035 | 252 | I → T in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030424 | 266 | T → K in NS4. 3 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030425 | 269 | M → R in NS4. 3 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_064504 | 269 | M → T in NS4. 3 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030426 | 309 | D → Y in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030427 | 337 | Y → C in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066036 | 378 | T → A in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066037 | 422 | M → V in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066038 | 424 | E → K in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066039 | 427 – 430 | KNID → N in NS4. 1 Publication Manual assertion based on experiment ini
| 4 | |
Natural variantiVAR_066040 | 432 – 433 | Missing in NS4. 1 Publication Manual assertion based on experiment ini
| 2 | |
Natural variantiVAR_030428 | 432 | W → R in NS4. 3 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030429 | 433 | E → K in NS4. 3 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066041 | 434 | G → K in NS4; requires 2 nucleotide substitutions. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030430 | 434 | G → R in NS4. 2 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066042 | 437 | I → T in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030431 | 441 | C → Y in NS4. 2 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_064505 | 477 | Q → R in NS4. 2 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066044 | 478 | P → R in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066045 | 482 | G → R in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066046 | 490 | L → R in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_064506 | 497 | R → Q in NS4; one patient with Noonan syndrome also carries a likely pathogenic mutation Ser-261 in RAF1; the mutant protein cannot induce ERK1 phosphorylation. 2 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030432 | 548 | S → R in NS4. 3 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066047 | 549 | T → K in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030433 | 550 | L → P in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030434 | 552 | R → G in NS4; increases the basal level of active RAS; prolonges RAS activation after EGF stimulation and enhances ERK activation. 4 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030435 | 552 | R → K in NS4. 2 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066048 | 552 | R → M in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030436 | 552 | R → S in NS4. 2 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066049 | 552 | R → T in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066050 | 554 – 558 | LDVTM → K in NS4. 1 Publication Manual assertion based on experiment ini
| 5 | |
Natural variantiVAR_066052 | 623 | F → I in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030438 | 702 | Y → H in NS4. 2 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030439 | 729 | W → L in NS4; promotes constitutive RAS activation and enhances ERK activation. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030440 | 733 | I → F in NS4. 2 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030441 | 846 | E → K in NS4. 3 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066055 | 894 | P → R in NS4. 1 Publication Manual assertion based on experiment ini
| 1 |
Mutagenesis
Feature key | Position(s) | DescriptionActions | Graphical view | Length |
---|---|---|---|---|
<p>This subsection of the <a href="http://www.uniprot.org/manual/pathology%5Fand%5Fbiotech%5Fsection">'Pathology and Biotech'</a> section describes the effect of the experimental mutation of one or more amino acid(s) on the biological properties of the protein.<p><a href='/help/mutagen' target='_top'>More...</a></p>Mutagenesisi | 282 | C → R: Increases MAPK3 phosphorylation in response to EGF stimulation. 1 Publication Manual assertion based on experiment ini
| 1 | |
Mutagenesisi | 1134 | S → A: Loss of phosphorylation, disruption of interaction with YWHAB and YWHAE, and modest increase in the magnitude and duration of EGF-induced MAPK1/3 phosphorylation; when associated with A-1161. 1 Publication Manual assertion based on experiment ini
| 1 | |
Mutagenesisi | 1161 | S → A: Loss of phosphorylation, disruption of interaction with YWHAB and YWHAE, and modest increase in the magnitude and duration of EGF-induced MAPK1/3 phosphorylation; when associated with A-1134. 1 Publication Manual assertion based on experiment ini
| 1 |
Keywords - Diseasei
Disease variantOrganism-specific databases
DisGeNET More...DisGeNETi | 6654 |
GeneReviews a resource of expert-authored, peer-reviewed disease descriptions. More...GeneReviewsi | SOS1 |
MalaCards human disease database More...MalaCardsi | SOS1 |
MIMi | 135300, phenotype 610733, phenotype |
Open Targets More...OpenTargetsi | ENSG00000115904 |
Orphanet; a database dedicated to information on rare diseases and orphan drugs More...Orphaneti | 2024, Hereditary gingival fibromatosis 648, Noonan syndrome |
The Pharmacogenetics and Pharmacogenomics Knowledge Base More...PharmGKBi | PA36024 |
Miscellaneous databases
Pharos NIH Druggable Genome Knowledgebase More...Pharosi | Q07889, Tchem |
Chemistry databases
ChEMBL database of bioactive drug-like small molecules More...ChEMBLi | CHEMBL2079846 |
IUPHAR/BPS Guide to PHARMACOLOGY More...GuidetoPHARMACOLOGYi | 3096 |
Genetic variation databases
BioMuta curated single-nucleotide variation and disease association database More...BioMutai | SOS1 |
Domain mapping of disease mutations (DMDM) More...DMDMi | 6094322 |
<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi
Molecule processing
Feature key | Position(s) | DescriptionActions | Graphical view | Length |
---|---|---|---|---|
<p>This subsection of the 'PTM / Processing' section describes the extent of a polypeptide chain in the mature protein following processing or proteolytic cleavage.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_0000068894 | 1 – 1333 | Son of sevenless homolog 1Add BLAST | 1333 |
Amino acid modifications
Feature key | Position(s) | DescriptionActions | Graphical view | Length |
---|---|---|---|---|
<p>This subsection of the 'PTM / Processing' section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei | 1078 | PhosphoserineBy similarity Manual assertion inferred from sequence similarity toi | 1 | |
Modified residuei | 1082 | PhosphoserineCombined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0007744">More...</a></p> Manual assertion inferred from combination of experimental and computational evidencei
| 1 | |
Modified residuei | 1134 | Phosphoserine; by RPS6KA3Combined sources Manual assertion inferred from combination of experimental and computational evidencei
Manual assertion based on experiment ini
| 1 | |
Modified residuei | 1161 | Phosphoserine; by RPS6KA31 Publication Manual assertion based on experiment ini
| 1 | |
Modified residuei | 1178 | PhosphoserineCombined sources Manual assertion inferred from combination of experimental and computational evidencei
| 1 | |
Modified residuei | 1210 | PhosphoserineCombined sources Manual assertion inferred from combination of experimental and computational evidencei
| 1 | |
Modified residuei | 1229 | PhosphoserineCombined sources Manual assertion inferred from combination of experimental and computational evidencei
| 1 | |
Modified residuei | 1275 | PhosphoserineCombined sources Manual assertion inferred from combination of experimental and computational evidencei
| 1 |
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm%5Fprocessing%5Fsection">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi
Manual assertion based on experiment ini
- Ref.14"RSK phosphorylates SOS1 creating 14-3-3-docking sites and negatively regulating MAPK activation."
Saha M., Carriere A., Cheerathodi M., Zhang X., Lavoie G., Rush J., Roux P.P., Ballif B.A.
Biochem. J. 447:159-166(2012) [PubMed] [Europe PMC] [Abstract]Cited for: PHOSPHORYLATION AT SER-1134 AND SER-1161, MUTAGENESIS OF SER-1134 AND SER-1161, INTERACTION WITH YWHAB AND YWHAE.
Keywords - PTMi
PhosphoproteinProteomic databases
The CPTAC Assay portal More...CPTACi | CPTAC-1554 CPTAC-1555 |
Encyclopedia of Proteome Dynamics More...EPDi | Q07889 |
jPOST - Japan Proteome Standard Repository/Database More...jPOSTi | Q07889 |
MassIVE - Mass Spectrometry Interactive Virtual Environment More...MassIVEi | Q07889 |
MaxQB - The MaxQuant DataBase More...MaxQBi | Q07889 |
PaxDb, a database of protein abundance averages across all three domains of life More...PaxDbi | Q07889 |
PeptideAtlas More...PeptideAtlasi | Q07889 |
PRoteomics IDEntifications database More...PRIDEi | Q07889 |
ProteomicsDB: a multi-organism proteome resource More...ProteomicsDBi | 5432 58554 [Q07889-1] |
PTM databases
iPTMnet integrated resource for PTMs in systems biology context More...iPTMneti | Q07889 |
Comprehensive resource for the study of protein post-translational modifications (PTMs) in human, mouse and rat. More...PhosphoSitePlusi | Q07889 |
<p>This section provides information on the expression of a gene at the mRNA or protein level in cells or in tissues of multicellular organisms.<p><a href='/help/expression_section' target='_top'>More...</a></p>Expressioni
<p>This subsection of the 'Expression' section provides information on the expression of a gene at the mRNA or protein level in cells or in tissues of multicellular organisms. By default, the information is derived from experiments at the mRNA level, unless specified 'at protein level'.<br></br>Examples: <a href="http://www.uniprot.org/uniprot/P92958#expression">P92958</a>, <a href="http://www.uniprot.org/uniprot/Q8TDN4#expression">Q8TDN4</a>, <a href="http://www.uniprot.org/uniprot/O14734#expression">O14734</a><p><a href='/help/tissue_specificity' target='_top'>More...</a></p>Tissue specificityi
Manual assertion based on experiment ini
- Ref.19"A mutation in the SOS1 gene causes hereditary gingival fibromatosis type 1."
Hart T.C., Zhang Y., Gorry M.C., Hart P.S., Cooper M., Marazita M.L., Marks J.M., Cortelli J.R., Pallos D.
Am. J. Hum. Genet. 70:943-954(2002) [PubMed] [Europe PMC] [Abstract]Cited for: INVOLVEMENT IN GINGF1, TISSUE SPECIFICITY.
Gene expression databases
Bgee dataBase for Gene Expression Evolution More...Bgeei | ENSG00000115904, Expressed in amniotic fluid and 247 other tissues |
ExpressionAtlas, Differential and Baseline Expression More...ExpressionAtlasi | Q07889, baseline and differential |
Genevisible search portal to normalized and curated expression data from Genevestigator More...Genevisiblei | Q07889, HS |
Organism-specific databases
Human Protein Atlas More...HPAi | ENSG00000115904, Low tissue specificity |
<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni
<p>This subsection of the <a href="http://www.uniprot.org/help/interaction%5Fsection">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function%5Fsection">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei
Interacts (via C-terminus) with GRB2 (via SH3 domain) (PubMed:8493579, PubMed:7664271).
Forms a complex with phosphorylated MUC1 and GRB2 (via its SH3 domains) (PubMed:7664271).
Interacts with phosphorylated LAT2 (PubMed:12486104).
Interacts with NCK1 and NCK2 (PubMed:10026169).
Part of a complex consisting of ABI1, EPS8 and SOS1 (By similarity).
Interacts (Ser-1134 and Ser-1161 phosphorylated form) with YWHAB and YWHAE (PubMed:22827337).
By similarityManual assertion inferred from sequence similarity toi
5 PublicationsManual assertion based on experiment ini
- Ref.1"Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2."
Chardin P., Camonis J.H., Gale N.W., van Aelst L., Wigler M.H., Bar-Sagi D.
Science 260:1338-1343(1993) [PubMed] [Europe PMC] [Abstract]Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), FUNCTION, INTERACTION WITH GRB2. - Ref.5"Association of the DF3/MUC1 breast cancer antigen with Grb2 and the Sos/Ras exchange protein."
Pandey P., Kharbanda S., Kufe D.
Cancer Res. 55:4000-4003(1995) [PubMed] [Europe PMC] [Abstract]Cited for: IDENTIFICATION IN A COMPLEX WITH MUC1 AND GRB2, INTERACTION WITH MUC1. - Ref.6"Identification of Grb4/Nckbeta, a src homology 2 and 3 domain-containing adapter protein having similar binding and biological properties to Nck."
Braverman L.E., Quilliam L.A.
J. Biol. Chem. 274:5542-5549(1999) [PubMed] [Europe PMC] [Abstract]Cited for: INTERACTION WITH NCK1 AND NCK2. - Ref.7"Non-T cell activation linker (NTAL): a transmembrane adaptor protein involved in immunoreceptor signaling."
Brdicka T., Imrich M., Angelisova P., Brdickova N., Horvath O., Spicka J., Hilgert I., Luskova P., Draber P., Novak P., Engels N., Wienands J., Simeoni L., Oesterreicher J., Aguado E., Malissen M., Schraven B., Horejsi V.
J. Exp. Med. 196:1617-1626(2002) [PubMed] [Europe PMC] [Abstract]Cited for: INTERACTION WITH LAT2. - Ref.14"RSK phosphorylates SOS1 creating 14-3-3-docking sites and negatively regulating MAPK activation."
Saha M., Carriere A., Cheerathodi M., Zhang X., Lavoie G., Rush J., Roux P.P., Ballif B.A.
Biochem. J. 447:159-166(2012) [PubMed] [Europe PMC] [Abstract]Cited for: PHOSPHORYLATION AT SER-1134 AND SER-1161, MUTAGENESIS OF SER-1134 AND SER-1161, INTERACTION WITH YWHAB AND YWHAE.
<p>This subsection of the '<a href="http://www.uniprot.org/help/interaction%5Fsection">Interaction</a>' section provides information about binary protein-protein interactions. The data presented in this section are a quality-filtered subset of binary interactions automatically derived from the <a href="https://www.ebi.ac.uk/intact/">IntAct database</a>. It is updated at every <a href="http://www.uniprot.org/help/synchronization">UniProt release</a>.<p><a href='/help/binary_interactions' target='_top'>More...</a></p>Binary interactionsi
Q07889
GO - Molecular functioni
- protein heterodimerization activity Source: InterPro
- SH3 domain binding Source: Ensembl
Protein-protein interaction databases
The Biological General Repository for Interaction Datasets (BioGRID) More...BioGRIDi | 112537, 72 interactors |
ComplexPortal: manually curated resource of macromolecular complexes More...ComplexPortali | CPX-395, GTPase HRAS - Son of sevenless homolog 1 complex |
CORUM comprehensive resource of mammalian protein complexes More...CORUMi | Q07889 |
Database of interacting proteins More...DIPi | DIP-31802N |
Protein interaction database and analysis system More...IntActi | Q07889, 43 interactors |
Molecular INTeraction database More...MINTi | Q07889 |
STRING: functional protein association networks More...STRINGi | 9606.ENSP00000387784 |
Chemistry databases
BindingDB database of measured binding affinities More...BindingDBi | Q07889 |
Miscellaneous databases
RNAct, Protein-RNA interaction predictions for model organisms. More...RNActi | Q07889, protein |
<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei
Secondary structure
Feature key | Position(s) | DescriptionActions | Graphical view | Length |
---|---|---|---|---|
<p>This subsection of the <a href="http://www.uniprot.org/help/structure%5Fsection">'Structure'</a> section is used to indicate the positions of experimentally determined hydrogen-bonded turns within the protein sequence. These elements correspond to the DSSP secondary structure code 'T'.<p><a href='/help/turn' target='_top'>More...</a></p>Turni | 13 – 15 | Combined sources <p>Information inferred from a combination of experimental and computational evidence, without manual validation.</p> <p><a href="/manual/evidences#ECO:0000213">More...</a></p> Automatic assertion inferred from combination of experimental and computational evidencei | 3 | |
<p>This subsection of the <a href="http://www.uniprot.org/help/structure%5Fsection">'Structure'</a> section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 19 – 23 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 5 | |
<p>This subsection of the <a href="http://www.uniprot.org/help/structure%5Fsection">'Structure'</a> section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 24 – 34 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 11 | |
Beta strandi | 36 – 39 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 4 | |
Helixi | 42 – 61 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 20 | |
Helixi | 67 – 77 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 11 | |
Helixi | 82 – 94 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 13 | |
Beta strandi | 100 – 102 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 3 | |
Helixi | 107 – 118 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 12 | |
Helixi | 124 – 151 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 28 | |
Helixi | 159 – 168 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 10 | |
Helixi | 172 – 175 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 4 | |
Helixi | 201 – 224 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 24 | |
Turni | 225 – 227 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 3 | |
Helixi | 228 – 232 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 5 | |
Turni | 234 – 236 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 3 | |
Helixi | 239 – 246 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 8 | |
Helixi | 249 – 268 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 20 | |
Beta strandi | 274 – 276 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 3 | |
Helixi | 280 – 288 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 9 | |
Turni | 289 – 292 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 4 | |
Helixi | 293 – 302 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 10 | |
Helixi | 307 – 316 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 10 | |
Helixi | 320 – 327 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 8 | |
Helixi | 331 – 337 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 7 | |
Helixi | 339 – 342 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 4 | |
Helixi | 345 – 363 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 19 | |
Helixi | 367 – 379 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 13 | |
Helixi | 381 – 392 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 12 | |
Helixi | 394 – 402 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 9 | |
Helixi | 420 – 426 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 7 | |
Beta strandi | 429 – 431 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 3 | |
Helixi | 437 – 439 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 3 | |
Beta strandi | 444 – 452 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 9 | |
Turni | 453 – 456 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 4 | |
Beta strandi | 459 – 473 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 15 | |
Helixi | 480 – 482 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 3 | |
Beta strandi | 487 – 496 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 10 | |
Beta strandi | 500 – 503 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 4 | |
Beta strandi | 507 – 509 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 3 | |
Beta strandi | 512 – 516 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 5 | |
Turni | 519 – 521 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 3 | |
Beta strandi | 524 – 527 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 4 | |
Helixi | 531 – 545 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 15 | |
Turni | 546 – 549 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 4 | |
Helixi | 564 – 567 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 4 | |
Turni | 572 – 574 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 3 | |
Helixi | 576 – 578 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 3 | |
Turni | 583 – 585 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 3 | |
Beta strandi | 586 – 588 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 3 | |
Beta strandi | 590 – 592 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 3 | |
Turni | 594 – 596 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 3 | |
Beta strandi | 601 – 604 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 4 | |
Helixi | 606 – 613 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 8 | |
Beta strandi | 616 – 618 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 3 | |
Helixi | 621 – 630 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 10 | |
Helixi | 631 – 633 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 3 | |
Helixi | 637 – 648 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 12 | |
Helixi | 657 – 664 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 8 | |
Beta strandi | 665 – 667 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 3 | |
Helixi | 672 – 680 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 9 | |
Helixi | 682 – 699 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 18 | |
Helixi | 702 – 706 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 5 | |
Helixi | 708 – 719 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 12 | |
Helixi | 724 – 726 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 3 | |
Helixi | 727 – 742 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 16 | |
Beta strandi | 764 – 766 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 3 | |
Helixi | 771 – 773 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 3 | |
Turni | 776 – 778 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 3 | |
Helixi | 781 – 797 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 17 | |
Helixi | 801 – 803 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 3 | |
Helixi | 805 – 810 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 6 | |
Beta strandi | 811 – 813 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 3 | |
Helixi | 814 – 817 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 4 | |
Helixi | 819 – 840 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 22 | |
Helixi | 845 – 864 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 20 | |
Helixi | 868 – 878 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 11 | |
Helixi | 881 – 884 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 4 | |
Helixi | 887 – 891 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 5 | |
Helixi | 895 – 906 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 12 | |
Helixi | 909 – 919 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 11 | |
Helixi | 931 – 942 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 12 | |
Beta strandi | 946 – 950 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 5 | |
Beta strandi | 953 – 957 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 5 | |
Helixi | 958 – 974 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 17 | |
Helixi | 985 – 992 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 8 | |
Turni | 996 – 999 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 4 | |
Helixi | 1002 – 1016 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 15 | |
Beta strandi | 1020 – 1022 | Combined sources Automatic assertion inferred from combination of experimental and computational evidencei | 3 |
3D structure databases
AlphaFold Protein Structure Database More...AlphaFoldDBi | Q07889 |
SWISS-MODEL Repository - a database of annotated 3D protein structure models More...SMRi | Q07889 |
Database of comparative protein structure models More...ModBasei | Search... |
Protein Data Bank in Europe - Knowledge Base More...PDBe-KBi | Search... |
Miscellaneous databases
Relative evolutionary importance of amino acids within a protein sequence More...EvolutionaryTracei | Q07889 |
<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi
Domains and Repeats
Feature key | Position(s) | DescriptionActions | Graphical view | Length |
---|---|---|---|---|
<p>This subsection of the <a href="http://www.uniprot.org/help/family%5Fand%5Fdomains%5Fsection">Family and Domains</a> section describes the position and type of a domain, which is defined as a specific combination of secondary structures organized into a characteristic three-dimensional structure or fold.<p><a href='/help/domain' target='_top'>More...</a></p>Domaini | 200 – 390 | DHPROSITE-ProRule annotation <p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More...</a></p> Manual assertion according to rulesi Add BLAST | 191 | |
Domaini | 444 – 548 | PHPROSITE-ProRule annotation Manual assertion according to rulesi Add BLAST | 105 | |
Domaini | 597 – 741 | N-terminal Ras-GEFPROSITE-ProRule annotation Manual assertion according to rulesi Add BLAST | 145 | |
Domaini | 780 – 1019 | Ras-GEFPROSITE-ProRule annotation Manual assertion according to rulesi Add BLAST | 240 |
Region
Feature key | Position(s) | DescriptionActions | Graphical view | Length |
---|---|---|---|---|
<p>This subsection of the 'Family and Domains' section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni | 1019 – 1103 | DisorderedSequence analysis <p>Information which has been generated by the UniProtKB automatic annotation system, without manual validation.</p> <p><a href="/manual/evidences#ECO:0000256">More...</a></p> Automatic assertion according to sequence analysisi Add BLAST | 85 | |
Regioni | 1129 – 1333 | DisorderedSequence analysis Automatic assertion according to sequence analysisi Add BLAST | 205 |
Compositional bias
Feature key | Position(s) | DescriptionActions | Graphical view | Length |
---|---|---|---|---|
<p>This subsection of the 'Family and Domains' section describes the position of regions of compositional bias within the protein and the particular type of amino acids that are over-represented within those regions.<p><a href='/help/compbias' target='_top'>More...</a></p>Compositional biasi | 1129 – 1143 | Polar residuesSequence analysis Automatic assertion according to sequence analysisi Add BLAST | 15 | |
Compositional biasi | 1147 – 1161 | Pro residuesSequence analysis Automatic assertion according to sequence analysisi Add BLAST | 15 | |
Compositional biasi | 1190 – 1206 | Polar residuesSequence analysis Automatic assertion according to sequence analysisi Add BLAST | 17 | |
Compositional biasi | 1252 – 1271 | Pro residuesSequence analysis Automatic assertion according to sequence analysisi Add BLAST | 20 | |
Compositional biasi | 1306 – 1321 | Basic and acidic residuesSequence analysis Automatic assertion according to sequence analysisi Add BLAST | 16 |
Phylogenomic databases
evolutionary genealogy of genes: Non-supervised Orthologous Groups More...eggNOGi | KOG3417, Eukaryota |
Ensembl GeneTree More...GeneTreei | ENSGT00940000155423 |
InParanoid: Eukaryotic Ortholog Groups More...InParanoidi | Q07889 |
Identification of Orthologs from Complete Genome Data More...OMAi | YDVENIF |
Database of Orthologous Groups More...OrthoDBi | 576110at2759 |
Database for complete collections of gene phylogenies More...PhylomeDBi | Q07889 |
TreeFam database of animal gene trees More...TreeFami | TF317296 |
Family and domain databases
Conserved Domains Database More...CDDi | cd00155, RasGEF, 1 hit cd06224, REM, 1 hit cd00160, RhoGEF, 1 hit |
Database of protein disorder More...DisProti | DP01534 |
Gene3D Structural and Functional Annotation of Protein Families More...Gene3Di | 1.10.20.10, 1 hit 1.10.840.10, 1 hit 1.20.900.10, 1 hit 2.30.29.30, 1 hit |
Integrated resource of protein families, domains and functional sites More...InterProi | View protein in InterPro IPR035899, DBL_dom_sf IPR000219, DH-domain IPR009072, Histone-fold IPR007125, Histone_H2A/H2B/H3 IPR011993, PH-like_dom_sf IPR001849, PH_domain IPR008937, Ras-like_GEF IPR000651, Ras-like_Gua-exchang_fac_N IPR019804, Ras_G-nucl-exch_fac_CS IPR023578, Ras_GEF_dom_sf IPR001895, RASGEF_cat_dom IPR036964, RASGEF_cat_dom_sf |
The PANTHER Classification System More...PANTHERi | PTHR23113, PTHR23113, 1 hit |
Pfam protein domain database More...Pfami | View protein in Pfam PF00125, Histone, 1 hit PF00169, PH, 1 hit PF00617, RasGEF, 1 hit PF00618, RasGEF_N, 1 hit PF00621, RhoGEF, 1 hit |
Simple Modular Architecture Research Tool; a protein domain database More...SMARTi | View protein in SMART SM00233, PH, 1 hit SM00147, RasGEF, 1 hit SM00229, RasGEFN, 1 hit SM00325, RhoGEF, 1 hit |
Superfamily database of structural and functional annotation More...SUPFAMi | SSF47113, SSF47113, 1 hit SSF48065, SSF48065, 1 hit SSF48366, SSF48366, 1 hit |
PROSITE; a protein domain and family database More...PROSITEi | View protein in PROSITE PS50010, DH_2, 1 hit PS50003, PH_DOMAIN, 1 hit PS00720, RASGEF, 1 hit PS50009, RASGEF_CAT, 1 hit PS50212, RASGEF_NTER, 1 hit |
<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence%5Flength">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequences (2+)i
<p>This subsection of the <a href="http://www.uniprot.org/help/sequences%5Fsection">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical%5Fand%5Fisoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.
This entry describes 2 <p>This subsection of the 'Sequence' section lists the alternative protein sequences (isoforms) that can be generated from the same gene by a single or by the combination of up to four biological events (alternative promoter usage, alternative splicing, alternative initiation and ribosomal frameshifting). Additionally, this section gives relevant information on each alternative protein isoform.<p><a href='/help/alternative_products' target='_top'>More...</a></p> isoformsi produced by alternative splicing. AlignAdd to basketAdded to basketThis entry has 2 described isoforms and 9 potential isoforms that are computationally mapped.Show allAlign All
This isoform has been chosen as the <p><strong>What is the canonical sequence?</strong><p><a href='/help/canonical_and_isoforms' target='_top'>More...</a></p>canonicali sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.
10 20 30 40 50
MQAQQLPYEF FSEENAPKWR GLLVPALKKV QGQVHPTLES NDDALQYVEE
60 70 80 90 100
LILQLLNMLC QAQPRSASDV EERVQKSFPH PIDKWAIADA QSAIEKRKRR
110 120 130 140 150
NPLSLPVEKI HPLLKEVLGY KIDHQVSVYI VAVLEYISAD ILKLVGNYVR
160 170 180 190 200
NIRHYEITKQ DIKVAMCADK VLMDMFHQDV EDINILSLTD EEPSTSGEQT
210 220 230 240 250
YYDLVKAFMA EIRQYIRELN LIIKVFREPF VSNSKLFSAN DVENIFSRIV
260 270 280 290 300
DIHELSVKLL GHIEDTVEMT DEGSPHPLVG SCFEDLAEEL AFDPYESYAR
310 320 330 340 350
DILRPGFHDR FLSQLSKPGA ALYLQSIGEG FKEAVQYVLP RLLLAPVYHC
360 370 380 390 400
LHYFELLKQL EEKSEDQEDK ECLKQAITAL LNVQSGMEKI CSKSLAKRRL
410 420 430 440 450
SESACRFYSQ QMKGKQLAIK KMNEIQKNID GWEGKDIGQC CNEFIMEGTL
460 470 480 490 500
TRVGAKHERH IFLFDGLMIC CKSNHGQPRL PGASNAEYRL KEKFFMRKVQ
510 520 530 540 550
INDKDDTNEY KHAFEIILKD ENSVIFSAKS AEEKNNWMAA LISLQYRSTL
560 570 580 590 600
ERMLDVTMLQ EEKEEQMRLP SADVYRFAEP DSEENIIFEE NMQPKAGIPI
610 620 630 640 650
IKAGTVIKLI ERLTYHMYAD PNFVRTFLTT YRSFCKPQEL LSLIIERFEI
660 670 680 690 700
PEPEPTEADR IAIENGDQPL SAELKRFRKE YIQPVQLRVL NVCRHWVEHH
710 720 730 740 750
FYDFERDAYL LQRMEEFIGT VRGKAMKKWV ESITKIIQRK KIARDNGPGH
760 770 780 790 800
NITFQSSPPT VEWHISRPGH IETFDLLTLH PIEIARQLTL LESDLYRAVQ
810 820 830 840 850
PSELVGSVWT KEDKEINSPN LLKMIRHTTN LTLWFEKCIV ETENLEERVA
860 870 880 890 900
VVSRIIEILQ VFQELNNFNG VLEVVSAMNS SPVYRLDHTF EQIPSRQKKI
910 920 930 940 950
LEEAHELSED HYKKYLAKLR SINPPCVPFF GIYLTNILKT EEGNPEVLKR
960 970 980 990 1000
HGKELINFSK RRKVAEITGE IQQYQNQPYC LRVESDIKRF FENLNPMGNS
1010 1020 1030 1040 1050
MEKEFTDYLF NKSLEIEPRN PKPLPRFPKK YSYPLKSPGV RPSNPRPGTM
1060 1070 1080 1090 1100
RHPTPLQQEP RKISYSRIPE SETESTASAP NSPRTPLTPP PASGASSTTD
1110 1120 1130 1140 1150
VCSVFDSDHS SPFHSSNDTV FIQVTLPHGP RSASVSSISL TKGTDEVPVP
1160 1170 1180 1190 1200
PPVPPRRRPE SAPAESSPSK IMSKHLDSPP AIPPRQPTSK AYSPRYSISD
1210 1220 1230 1240 1250
RTSISDPPES PPLLPPREPV RTPDVFSSSP LHLQPPPLGK KSDHGNAFFP
1260 1270 1280 1290 1300
NSPSPFTPPP PQTPSPHGTR RHLPSPPLTQ EVDLHSIAGP PVPPRQSTSQ
1310 1320 1330
HIPKLPPKTY KREHTHPSMH RDGPPLLENA HSS
The sequence of this isoform differs from the canonical sequence as follows:
1-57: Missing.
359-371: QLEEKSEDQEDKE → FPFGDLSRLRDSV
372-1333: Missing.
10 20 30 40 50
MLCQAQPRSA SDVEERVQKS FPHPIDKWAI ADAQSAIEKR KRRNPLSLPV
60 70 80 90 100
EKIHPLLKEV LGYKIDHQVS VYIVAVLEYI SADILKLVGN YVRNIRHYEI
110 120 130 140 150
TKQDIKVAMC ADKVLMDMFH QDVEDINILS LTDEEPSTSG EQTYYDLVKA
160 170 180 190 200
FMAEIRQYIR ELNLIIKVFR EPFVSNSKLF SANDVENIFS RIVDIHELSV
210 220 230 240 250
KLLGHIEDTV EMTDEGSPHP LVGSCFEDLA EELAFDPYES YARDILRPGF
260 270 280 290 300
HDRFLSQLSK PGAALYLQSI GEGFKEAVQY VLPRLLLAPV YHCLHYFELL
310
KFPFGDLSRL RDSV
<p>In eukaryotic reference proteomes, unreviewed entries that are likely to belong to the same gene are computationally mapped, based on gene identifiers from Ensembl, EnsemblGenomes and model organism databases.<p><a href='/help/gene_centric_isoform_mapping' target='_top'>More...</a></p>Computationally mapped potential isoform sequencesi
There are 9 potential isoforms mapped to this entry.BLASTAlignShow allAdd to basketEntry | Entry name | Protein names | Gene names | Length | Annotation | ||
---|---|---|---|---|---|---|---|
G5E9C8 | G5E9C8_HUMAN | Son of sevenless homolog 1 Son of sevenless homolog 1 (Son of sevenless homolog 1 (Drosophila), isoform CRA_d) | SOS1 hCG_1641052 | 1,318 | Annotation score: Annotation score:1 out of 5 <p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the 'correct annotation' for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p> | ||
C9K0N6 | C9K0N6_HUMAN | Son of sevenless homolog 1 Son of sevenless homolog 1 | SOS1 | 102 | Annotation score: Annotation score:1 out of 5 <p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the 'correct annotation' for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p> | ||
A0A8I5KP47 | A0A8I5KP47_HUMAN | Son of sevenless homolog 1 Son of sevenless homolog 1 | SOS1 | 897 | Annotation score: Annotation score:1 out of 5 <p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the 'correct annotation' for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p> | ||
A0A8I5KV97 | A0A8I5KV97_HUMAN | Son of sevenless homolog 1 Son of sevenless homolog 1 | SOS1 | 318 | Annotation score: Annotation score:1 out of 5 <p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the 'correct annotation' for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p> | ||
A0A8I5KWL0 | A0A8I5KWL0_HUMAN | Son of sevenless homolog 1 Son of sevenless homolog 1 | SOS1 | 1,086 | Annotation score: Annotation score:1 out of 5 <p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the 'correct annotation' for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p> | ||
A0A8I5KY52 | A0A8I5KY52_HUMAN | Son of sevenless homolog 1 Son of sevenless homolog 1 | SOS1 | 922 | Annotation score: Annotation score:1 out of 5 <p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the 'correct annotation' for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p> | ||
A0A8I5QJ77 | A0A8I5QJ77_HUMAN | Son of sevenless homolog 1 Son of sevenless homolog 1 | SOS1 | 1,147 | Annotation score: Annotation score:1 out of 5 <p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the 'correct annotation' for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p> | ||
A0A8I5QJD1 | A0A8I5QJD1_HUMAN | Son of sevenless homolog 1 Son of sevenless homolog 1 | SOS1 | 404 | Annotation score: Annotation score:1 out of 5 <p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the 'correct annotation' for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p> | ||
A0A8I5QJF3 | A0A8I5QJF3_HUMAN | Son of sevenless homolog 1 Son of sevenless homolog 1 | SOS1 | 405 | Annotation score: Annotation score:1 out of 5 <p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the 'correct annotation' for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p> |
Natural variant
Feature key | Position(s) | DescriptionActions | Graphical view | Length |
---|---|---|---|---|
Natural variantiVAR_066031 | 37 | T → A in a patient with Noonan syndrome. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066032 | 102 | P → R in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030423 | 108 | E → K in NS4. 2 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066033 | 112 | P → R in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066034 | 170 | K → E in NS4. 3 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066035 | 252 | I → T in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030424 | 266 | T → K in NS4. 3 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030425 | 269 | M → R in NS4. 3 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_064504 | 269 | M → T in NS4. 3 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030426 | 309 | D → Y in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030427 | 337 | Y → C in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066036 | 378 | T → A in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066037 | 422 | M → V in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066038 | 424 | E → K in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066039 | 427 – 430 | KNID → N in NS4. 1 Publication Manual assertion based on experiment ini
| 4 | |
Natural variantiVAR_066040 | 432 – 433 | Missing in NS4. 1 Publication Manual assertion based on experiment ini
| 2 | |
Natural variantiVAR_030428 | 432 | W → R in NS4. 3 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030429 | 433 | E → K in NS4. 3 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066041 | 434 | G → K in NS4; requires 2 nucleotide substitutions. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030430 | 434 | G → R in NS4. 2 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066042 | 437 | I → T in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030431 | 441 | C → Y in NS4. 2 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_064505 | 477 | Q → R in NS4. 2 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066043 | 478 | P → L Found in patients with Noonan syndrome. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066044 | 478 | P → R in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066045 | 482 | G → R in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066046 | 490 | L → R in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_064506 | 497 | R → Q in NS4; one patient with Noonan syndrome also carries a likely pathogenic mutation Ser-261 in RAF1; the mutant protein cannot induce ERK1 phosphorylation. 2 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030432 | 548 | S → R in NS4. 3 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066047 | 549 | T → K in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030433 | 550 | L → P in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030434 | 552 | R → G in NS4; increases the basal level of active RAS; prolonges RAS activation after EGF stimulation and enhances ERK activation. 4 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030435 | 552 | R → K in NS4. 2 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066048 | 552 | R → M in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030436 | 552 | R → S in NS4. 2 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066049 | 552 | R → T in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066050 | 554 – 558 | LDVTM → K in NS4. 1 Publication Manual assertion based on experiment ini
| 5 | |
Natural variantiVAR_066051 | 569 | L → V2 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066052 | 623 | F → I in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030437 | 655 | P → L4 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030438 | 702 | Y → H in NS4. 2 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066053 | 708 | A → T1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030439 | 729 | W → L in NS4; promotes constitutive RAS activation and enhances ERK activation. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030440 | 733 | I → F in NS4. 2 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066054 | 784 | I → T in a patient with Noonan syndrome. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030441 | 846 | E → K in NS4. 3 Publications Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066055 | 894 | P → R in NS4. 1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_030442 | 977 | Q → R1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066056 | 1011 | N → S1 Publication Manual assertion based on experiment ini
| 1 | |
Natural variantiVAR_066057 | 1131 | R → K in a patient with Noonan syndrome. 1 Publication Manual assertion based on experiment ini
|