Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 161 (16 Oct 2019)
Sequence version 1 (01 Apr 1993)
Previous versions | rss
Help videoAdd a publicationFeedback
Protein

Macrophage colony-stimulating factor 1 receptor

Gene

Csf1r

Organism
Rattus norvegicus (Rat)
Status
Reviewed-Annotation score:

Annotation score:5 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at protein leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Tyrosine-protein kinase that acts as cell-surface receptor for CSF1 and IL34 and plays an essential role in the regulation of survival, proliferation and differentiation of hematopoietic precursor cells, especially mononuclear phagocytes, such as macrophages and monocytes. Promotes the release of proinflammatory chemokines in response to IL34 and CSF1, and thereby plays an important role in innate immunity and in inflammatory processes. Plays an important role in the regulation of osteoclast proliferation and differentiation, the regulation of bone resorption, and is required for normal bone and tooth development. Required for normal male and female fertility, and for normal development of milk ducts and acinar structures in the mammary gland during pregnancy. Promotes reorganization of the actin cytoskeleton, regulates formation of membrane ruffles, cell adhesion and cell migration, and promotes cancer cell invasion. Activates several signaling pathways in response to ligand binding. Phosphorylates PIK3R1, PLCG2, GRB2, SLA2 and CBL. Activation of PLCG2 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate, that then lead to the activation of protein kinase C family members, especially PRKCD. Phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leads to activation of the AKT1 signaling pathway. Activated CSF1R also mediates activation of the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1, and of the SRC family kinases SRC, FYN and YES1. Activated CSF1R transmits signals both via proteins that directly interact with phosphorylated tyrosine residues in its intracellular domain, or via adapter proteins, such as GRB2. Promotes activation of STAT family members STAT3, STAT5A and/or STAT5B. Promotes tyrosine phosphorylation of SHC1 and INPP5D/SHIP-1. Receptor signaling is down-regulated by protein phosphatases, such as INPP5D/SHIP-1, that dephosphorylate the receptor and its downstream effectors, and by rapid internalization of the activated receptor (By similarity).By similarity1 Publication

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes the catalytic activity of an enzyme, i.e. a chemical reaction that the enzyme catalyzes.<p><a href='/help/catalytic_activity' target='_top'>More...</a></p>Catalytic activityi

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes regulatory mechanisms for enzymes, transporters or microbial transcription factors, and reports the components which regulate (by activation or inhibition) the reaction.<p><a href='/help/activity_regulation' target='_top'>More...</a></p>Activity regulationi

Present in an inactive conformation in the absence of bound ligand. CSF1 or IL34 binding leads to dimerization and activation by autophosphorylation on tyrosine residues (By similarity).By similarity

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes the interaction between a single amino acid and another chemical entity. Priority is given to the annotation of physiological ligands.<p><a href='/help/binding' target='_top'>More...</a></p>Binding sitei614ATPPROSITE-ProRule annotation1
<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section is used for enzymes and indicates the residues directly involved in catalysis.<p><a href='/help/act_site' target='_top'>More...</a></p>Active sitei776Proton acceptorPROSITE-ProRule annotation1

Regions

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes a region in the protein which binds nucleotide phosphates. It always involves more than one amino acid and includes all residues involved in nucleotide-binding.<p><a href='/help/np_bind' target='_top'>More...</a></p>Nucleotide bindingi586 – 594ATPPROSITE-ProRule annotation9

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionKinase, Receptor, Transferase, Tyrosine-protein kinase
Biological processImmunity, Inflammatory response, Innate immunity
LigandATP-binding, Nucleotide-binding

Enzyme and pathway databases

BRENDA Comprehensive Enzyme Information System

More...
BRENDAi
2.7.10.1 5301

Reactome - a knowledgebase of biological pathways and processes

More...
Reactomei
R-RNO-449836 Other interleukin signaling

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Macrophage colony-stimulating factor 1 receptor
Alternative name(s):
CSF-1 receptor (EC:2.7.10.1)
Short name:
CSF-1-R
Short name:
CSF-1R
Short name:
M-CSF-R
Proto-oncogene c-Fms
CD_antigen: CD115
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:Csf1r
Synonyms:Csfmr, Fms
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiRattus norvegicus (Rat)
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri10116 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresGliresRodentiaMyomorphaMuroideaMuridaeMurinaeRattus
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
  • UP000002494 <p>A UniProt <a href="http://www.uniprot.org/manual/proteomes_manual">proteome</a> can consist of several components. <br></br>The component name refers to the genomic component encoding a set of proteins.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Unplaced

Organism-specific databases

Rat genome database

More...
RGDi
2425 Csf1r

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte & Seán O’Donoghue; Source: COMPARTMENTS

Topology

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/subcellular_location_section">'Subcellular location'</a> section describes the subcellular compartment where each non-membrane region of a membrane-spanning protein is found.<p><a href='/help/topo_dom' target='_top'>More...</a></p>Topological domaini20 – 515ExtracellularSequence analysisAdd BLAST496
<p>This subsection of the <a href="http://www.uniprot.org/help/subcellular_location_section">'Subcellular location'</a> section describes the extent of a membrane-spanning region of the protein. It denotes the presence of both alpha-helical transmembrane regions and the membrane spanning regions of beta-barrel transmembrane proteins.<p><a href='/help/transmem' target='_top'>More...</a></p>Transmembranei516 – 536HelicalSequence analysisAdd BLAST21
Topological domaini537 – 978CytoplasmicSequence analysisAdd BLAST442

Keywords - Cellular componenti

Cell membrane, Membrane

<p>This section provides information on the disease(s) and phenotype(s) associated with a protein.<p><a href='/help/pathology_and_biotech_section' target='_top'>More...</a></p>Pathology & Biotechi

Keywords - Diseasei

Proto-oncogene

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section denotes the presence of an N-terminal signal peptide.<p><a href='/help/signal' target='_top'>More...</a></p>Signal peptidei1 – 19By similarityAdd BLAST19
<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_000001676720 – 978Macrophage colony-stimulating factor 1 receptorAdd BLAST959

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the PTM / Processing":/help/ptm_processing_section section describes the positions of cysteine residues participating in disulfide bonds.<p><a href='/help/disulfid' target='_top'>More...</a></p>Disulfide bondi42 ↔ 84PROSITE-ProRule annotation
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section specifies the position and type of each covalently attached glycan group (mono-, di-, or polysaccharide).<p><a href='/help/carbohyd' target='_top'>More...</a></p>Glycosylationi45N-linked (GlcNAc...) asparagineSequence analysis1
Glycosylationi73N-linked (GlcNAc...) asparagineSequence analysis1
Disulfide bondi127 ↔ 177PROSITE-ProRule annotation
Disulfide bondi224 ↔ 278PROSITE-ProRule annotation
Glycosylationi302N-linked (GlcNAc...) asparagineSequence analysis1
Glycosylationi335N-linked (GlcNAc...) asparagineSequence analysis1
Glycosylationi389N-linked (GlcNAc...) asparagineSequence analysis1
Glycosylationi410N-linked (GlcNAc...) asparagineSequence analysis1
Disulfide bondi417 ↔ 483PROSITE-ProRule annotation
Glycosylationi449N-linked (GlcNAc...) asparagineSequence analysis1
Glycosylationi478N-linked (GlcNAc...) asparagineSequence analysis1
Glycosylationi491N-linked (GlcNAc...) asparagineSequence analysis1
<p>This subsection of the ‘PTM / Processing’ section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei544Phosphotyrosine; by autocatalysisBy similarity1
Modified residuei559Phosphotyrosine; by autocatalysisBy similarity1
Modified residuei697Phosphotyrosine; by autocatalysisBy similarity1
Modified residuei706Phosphotyrosine; by autocatalysisBy similarity1
Modified residuei711PhosphoserineBy similarity1
Modified residuei721Phosphotyrosine; by autocatalysisBy similarity1
Modified residuei807Phosphotyrosine; by autocatalysisBy similarity1
Modified residuei921Phosphotyrosine; by autocatalysisBy similarity1
Modified residuei974Phosphotyrosine; by autocatalysisBy similarity1

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

Autophosphorylated in response to CSF1 or IL34 binding. Phosphorylation at Tyr-559 is important for normal down-regulation of signaling by ubiquitination, internalization and degradation. Phosphorylation at Tyr-559 and Tyr-807 is important for interaction with SRC family members, including FYN, YES1 and SRC, and for subsequent activation of these protein kinases. Phosphorylation at Tyr-697 and Tyr-921 is important for interaction with GRB2. Phosphorylation at Tyr-721 is important for interaction with PIK3R1. Phosphorylation at Tyr-721 and Tyr-807 is important for interaction with PLCG2. Phosphorylation at Tyr-974 is important for interaction with CBL. Dephosphorylation by PTPN2 negatively regulates downstream signaling and macrophage differentiation (By similarity).By similarity
Ubiquitinated. Becomes rapidly polyubiquitinated after autophosphorylation, leading to its degradation (By similarity).By similarity

Keywords - PTMi

Disulfide bond, Glycoprotein, Phosphoprotein, Ubl conjugation

Proteomic databases

PRoteomics IDEntifications database

More...
PRIDEi
Q00495

PTM databases

iPTMnet integrated resource for PTMs in systems biology context

More...
iPTMneti
Q00495

Comprehensive resource for the study of protein post-translational modifications (PTMs) in human, mouse and rat.

More...
PhosphoSitePlusi
Q00495

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

Monomer. Homodimer.

Interacts with CSF1 and IL34. Interaction with dimeric CSF1 or IL34 leads to receptor homodimerization.

Interacts with INPPL1/SHIP2 and THOC5.

Interacts (tyrosine phosphorylated) with PLCG2 (via SH2 domain).

Interacts (tyrosine phosphorylated) with PIK3R1 (via SH2 domain).

Interacts (tyrosine phosphorylated) with FYN, YES1 and SRC (via SH2 domain).

Interacts (tyrosine phosphorylated) with CBL, GRB2 and SLA2 (By similarity).

By similarity

GO - Molecular functioni

Chemistry databases

BindingDB database of measured binding affinities

More...
BindingDBi
Q00495

<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

3D structure databases

SWISS-MODEL Repository - a database of annotated 3D protein structure models

More...
SMRi
Q00495

Database of comparative protein structure models

More...
ModBasei
Search...

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Domains and Repeats

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/family_and_domains_section">Family and Domains</a> section describes the position and type of a domain, which is defined as a specific combination of secondary structures organized into a characteristic three-dimensional structure or fold.<p><a href='/help/domain' target='_top'>More...</a></p>Domaini24 – 104Ig-like C2-type 1Add BLAST81
Domaini107 – 197Ig-like C2-type 2Add BLAST91
Domaini204 – 298Ig-like C2-type 3Add BLAST95
Domaini299 – 397Ig-like C2-type 4Add BLAST99
Domaini398 – 503Ig-like C2-type 5Add BLAST106
Domaini580 – 914Protein kinasePROSITE-ProRule annotationAdd BLAST335

Region

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni540 – 572Regulatory juxtamembrane domainBy similarityAdd BLAST33
Regioni794 – 816Activation loopBy similarityAdd BLAST23

<p>This subsection of the ‘Family and domains’ section provides general information on the biological role of a domain. The term ‘domain’ is intended here in its wide acceptation, it may be a structural domain, a transmembrane region or a functional domain. Several domains are described in this subsection.<p><a href='/help/domain_cc' target='_top'>More...</a></p>Domaini

The juxtamembrane domain functions as autoinhibitory region. Phosphorylation of tyrosine residues in this region leads to a conformation change and activation of the kinase (By similarity).By similarity
The activation loop plays an important role in the regulation of kinase activity. Phosphorylation of tyrosine residues in this region leads to a conformation change and activation of the kinase (By similarity).By similarity

<p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Belongs to the protein kinase superfamily. Tyr protein kinase family. CSF-1/PDGF receptor subfamily.PROSITE-ProRule annotation

Keywords - Domaini

Immunoglobulin domain, Repeat, Signal, Transmembrane, Transmembrane helix

Phylogenomic databases

InParanoid: Eukaryotic Ortholog Groups

More...
InParanoidi
Q00495

Database for complete collections of gene phylogenies

More...
PhylomeDBi
Q00495

Family and domain databases

Gene3D Structural and Functional Annotation of Protein Families

More...
Gene3Di
2.60.40.10, 5 hits

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR030658 CSF-1_receptor
IPR007110 Ig-like_dom
IPR036179 Ig-like_dom_sf
IPR013783 Ig-like_fold
IPR003599 Ig_sub
IPR003598 Ig_sub2
IPR013151 Immunoglobulin
IPR011009 Kinase-like_dom_sf
IPR000719 Prot_kinase_dom
IPR017441 Protein_kinase_ATP_BS
IPR001245 Ser-Thr/Tyr_kinase_cat_dom
IPR008266 Tyr_kinase_AS
IPR020635 Tyr_kinase_cat_dom
IPR001824 Tyr_kinase_rcpt_3_CS

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF00047 ig, 1 hit
PF07714 Pkinase_Tyr, 1 hit

PIRSF; a whole-protein classification database

More...
PIRSFi
PIRSF500947 CSF-1_receptor, 1 hit

Simple Modular Architecture Research Tool; a protein domain database

More...
SMARTi
View protein in SMART
SM00409 IG, 5 hits
SM00408 IGc2, 2 hits
SM00219 TyrKc, 1 hit

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF48726 SSF48726, 5 hits
SSF56112 SSF56112, 1 hit

PROSITE; a protein domain and family database

More...
PROSITEi
View protein in PROSITE
PS50835 IG_LIKE, 4 hits
PS00107 PROTEIN_KINASE_ATP, 1 hit
PS50011 PROTEIN_KINASE_DOM, 1 hit
PS00109 PROTEIN_KINASE_TYR, 1 hit
PS00240 RECEPTOR_TYR_KIN_III, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequence (1+)i

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is in its mature form or if it represents the precursor.<p><a href='/help/sequence_processing' target='_top'>More...</a></p>Sequence processingi: The displayed sequence is further processed into a mature form.

This entry has 1 described isoform and 3 potential isoforms that are computationally mapped.Show allAlign All

Q00495-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MELGPPLVLL LATVWHGQGA PVIEPSGPEL VVEPGETVTL RCVSNGSVEW
60 70 80 90 100
DGPISPYWTL DPESPGSTLT TRNATFKNTG TYRCTELEDP MAGSTTIHLY
110 120 130 140 150
VKDPAHSWNL LAQEVTVVEG QEAVLPCLIT DPALKDSVSL MREGGRQVLR
160 170 180 190 200
KTVYFFSAWR GFIIRKAKVL DSNTYVCKTM VNGRESTSTG IWLKVNRVHP
210 220 230 240 250
EPPQIKLEPS KLVRIRGEAA QIVCSATNAE VGFNVILKRG DTKLEIPLNS
260 270 280 290 300
DFQDNYYKKV RALSLNAVDF QDAGIYSCVA SNDVGTRTAT MNFQVVESAY
310 320 330 340 350
LNLTSEQSLL QEVSVGDSLI LTVHADAYPS IQHYNWTYLG PFFEDQRKLE
360 370 380 390 400
FITQRAIYRY TFKLFLNRVK ASEAGQYFLM AQNKAGWNNL TFELTLRYPP
410 420 430 440 450
EVSVTWMPVN GSDVLFCDVS GYPQPSVTWM ECRGHTDRCD EAQALQVWND
460 470 480 490 500
THPEVLSQKP FDKVIIQSQL PIGTLKHNMT YFCKTHNSVG NSSQYFRAVS
510 520 530 540 550
LGQSKQLPDE SLFTPVVVAC MSVMSLLVLL LLLLLYKYKQ KPKYQVRWKI
560 570 580 590 600
IERYEGNSYT FIDPTQLPYN EKWEFPRNNL QFGKTLGAGA FGKVVEATAF
610 620 630 640 650
GLGKEDAVLK VAVKMLKSTA HADEKEALMS ELKIMSHLGQ HENIVNLLGA
660 670 680 690 700
CTHGGPVLVI TEYCCYGDLL NFLRRKAEAM LGPSLSPGQD SEGDSSYKNI
710 720 730 740 750
HLEKKYVRRD SGFSSQGVDT YVEMRPVSTS SSDSFFKQDL DKEPSRPLEL
760 770 780 790 800
WDLLHFSSQV AQGMAFLASK NCIHRDVAAR NVLLTSGHVA KIGDFGLARD
810 820 830 840 850
IMNDSNYVVK GNARLPVKWM APESILYCVY TVQSDVWSYG ILLWEIFSLG
860 870 880 890 900
LNPYPGILVN NKFYKLVKDG YQMAQPVFAP KNIYSIMQSC WDLEPTRRPT
910 920 930 940 950
FQQICFLLQE QARLERRDQD YANLPSSGGS SGSDSGGGSS GGSSSEPEEE
960 970
SSSEHLACCE PGDIAQPLLQ PNNYQFAC
Length:978
Mass (Da):109,264
Last modified:April 1, 1993 - v1
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:i0A68456EF56BC7E3
GO

<p>In eukaryotic reference proteomes, unreviewed entries that are likely to belong to the same gene are computationally mapped, based on gene identifiers from Ensembl, EnsemblGenomes and model organism databases.<p><a href='/help/gene_centric_isoform_mapping' target='_top'>More...</a></p>Computationally mapped potential isoform sequencesi

There are 3 potential isoforms mapped to this entry.BLASTAlignShow allAdd to basket
EntryEntry nameProtein names
Gene namesLengthAnnotation
D4ACA7D4ACA7_RAT
Macrophage colony-stimulating facto...
Csf1r
1,022Annotation score:

Annotation score:5 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
A0A0G2KBC4A0A0G2KBC4_RAT
Colony stimulating factor 1 recepto...
Csf1r rCG_46850
978Annotation score:

Annotation score:3 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
A0A0G2K3Y5A0A0G2K3Y5_RAT
Macrophage colony-stimulating facto...
Csf1r
426Annotation score:

Annotation score:1 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
X61479 mRNA Translation: CAA43706.1

Protein sequence database of the Protein Information Resource

More...
PIRi
I60321 S16385

Genome annotation databases

UCSC genome browser

More...
UCSCi
RGD:2425 rat

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
X61479 mRNA Translation: CAA43706.1
PIRiI60321 S16385

3D structure databases

SMRiQ00495
ModBaseiSearch...

Chemistry databases

BindingDBiQ00495

PTM databases

iPTMnetiQ00495
PhosphoSitePlusiQ00495

Proteomic databases

PRIDEiQ00495

Genome annotation databases

UCSCiRGD:2425 rat

Organism-specific databases

RGDi2425 Csf1r

Phylogenomic databases

InParanoidiQ00495
PhylomeDBiQ00495

Enzyme and pathway databases

BRENDAi2.7.10.1 5301
ReactomeiR-RNO-449836 Other interleukin signaling

Miscellaneous databases

Protein Ontology

More...
PROi
PR:Q00495

Family and domain databases

Gene3Di2.60.40.10, 5 hits
InterProiView protein in InterPro
IPR030658 CSF-1_receptor
IPR007110 Ig-like_dom
IPR036179 Ig-like_dom_sf
IPR013783 Ig-like_fold
IPR003599 Ig_sub
IPR003598 Ig_sub2
IPR013151 Immunoglobulin
IPR011009 Kinase-like_dom_sf
IPR000719 Prot_kinase_dom
IPR017441 Protein_kinase_ATP_BS
IPR001245 Ser-Thr/Tyr_kinase_cat_dom
IPR008266 Tyr_kinase_AS
IPR020635 Tyr_kinase_cat_dom
IPR001824 Tyr_kinase_rcpt_3_CS
PfamiView protein in Pfam
PF00047 ig, 1 hit
PF07714 Pkinase_Tyr, 1 hit
PIRSFiPIRSF500947 CSF-1_receptor, 1 hit
SMARTiView protein in SMART
SM00409 IG, 5 hits
SM00408 IGc2, 2 hits
SM00219 TyrKc, 1 hit
SUPFAMiSSF48726 SSF48726, 5 hits
SSF56112 SSF56112, 1 hit
PROSITEiView protein in PROSITE
PS50835 IG_LIKE, 4 hits
PS00107 PROTEIN_KINASE_ATP, 1 hit
PS50011 PROTEIN_KINASE_DOM, 1 hit
PS00109 PROTEIN_KINASE_TYR, 1 hit
PS00240 RECEPTOR_TYR_KIN_III, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiCSF1R_RAT
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: Q00495
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: April 1, 1993
Last sequence update: April 1, 1993
Last modified: October 16, 2019
This is version 161 of the entry and version 1 of the sequence. See complete history.
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

<p>This section contains any relevant information that doesn’t fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

Complete proteome, Reference proteome

Documents

  1. SIMILARITY comments
    Index of protein domains and families
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again