Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 60 (11 Dec 2019)
Sequence version 2 (23 Jan 2007)
Previous versions | rss
Help videoAdd a publicationFeedback
Protein

L-amino-acid oxidase

Gene
N/A
Organism
Macrovipera lebetina (Levantine viper) (Vipera lebetina)
Status
Reviewed-Annotation score:

Annotation score:5 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at protein leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Catalyzes an oxidative deamination of predominantly hydrophobic and aromatic L-amino acids, thus producing hydrogen peroxide that may contribute to the diverse toxic effects of this enzyme (PubMed:16828829). Shows high activity on L-Met, moderate activity on L-Trp, L-Leu, L-His, L-Phe, L-Arg, L-Ile, low activity on L-Val, L-Glu, L-Lys, L-Gln, L-Asn, L-Tyr, L-Ala, and no activity on L-Asp, L-Ser, L-Pro, L-Gly, L-Thr and L-Cys (PubMed:16828829). Shows antimicrobial activity inhibiting the growth of both Gram-negative and Gram-positive bacteria (PubMed:16828829). Also inhibits platelet aggregation induced by ADP or collagen (PubMed:16828829). Effects of snake L-amino oxidases on platelets are controversial, since they either induce aggregation or inhibit agonist-induced aggregation (By similarity). These different effects are probably due to different experimental conditions (By similarity). This protein may also induce hemorrhage, hemolysis, edema, apoptosis, and have antiparasitic activities (By similarity).By similarity1 Publication

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes the catalytic activity of an enzyme, i.e. a chemical reaction that the enzyme catalyzes.<p><a href='/help/catalytic_activity' target='_top'>More...</a></p>Catalytic activityi

<p>This subsection of the ‘Function’ section provides information relevant to cofactors. A cofactor is any non-protein substance required for a protein to be catalytically active. Some cofactors are inorganic, such as the metal atoms zinc, iron, and copper in various oxidation states. Others, such as most vitamins, are organic.<p><a href='/help/cofactor' target='_top'>More...</a></p>Cofactori

FADBy similarity

<p>This subsection of the ‘Function’ section describes biophysical and chemical properties, such as maximal absorption, kinetic parameters, pH dependence, redox potentials and temperature dependence.<p><a href='/help/biophysicochemical_properties' target='_top'>More...</a></p>Kineticsi

  1. KM=0.40 mM for L-Leu1 Publication
  2. KM=0.65 mM for L-Met1 Publication
  3. KM=0.17 mM for L-Trp1 Publication

    Temperature dependencei

    Thermostable between 4 and 25 degrees Celsius. At -20 degrees Celsius, the remaining activity is 20%. Heating at 70 degrees Celsius inactivates the enzyme in 15 minutes.1 Publication

    Sites

    Feature keyPosition(s)DescriptionActionsGraphical viewLength
    <p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes the interaction between a single amino acid and another chemical entity. Priority is given to the annotation of physiological ligands.<p><a href='/help/binding' target='_top'>More...</a></p>Binding sitei38SubstrateBy similarity1
    Binding sitei49SubstrateBy similarity1

    Regions

    Feature keyPosition(s)DescriptionActionsGraphical viewLength
    <p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes a region in the protein which binds nucleotide phosphates. It always involves more than one amino acid and includes all residues involved in nucleotide-binding.<p><a href='/help/np_bind' target='_top'>More...</a></p>Nucleotide bindingi35 – 38FADBy similarity4

    <p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

    GO - Biological processi

    <p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

    Molecular functionAntibiotic, Antimicrobial, Hemostasis impairing toxin, Oxidoreductase, Platelet aggregation inhibiting toxin, Toxin
    Biological processApoptosis, Cytolysis, Hemolysis
    LigandFAD, Flavoprotein

    <p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

    <p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
    Recommended name:
    L-amino-acid oxidase (EC:1.4.3.21 Publication)
    Short name:
    LAAO1 Publication
    Short name:
    LAO
    <p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiMacrovipera lebetina (Levantine viper) (Vipera lebetina)
    <p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri8709 [NCBI]
    <p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiLepidosauriaSquamataBifurcataUnidentataEpisquamataToxicoferaSerpentesColubroideaViperidaeViperinaeMacrovipera

    <p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

    Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte & Seán O’Donoghue; Source: COMPARTMENTS

    Keywords - Cellular componenti

    Secreted

    <p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

    Molecule processing

    Feature keyPosition(s)DescriptionActionsGraphical viewLength
    <p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00000998721 – ›107L-amino-acid oxidaseAdd BLAST›107

    Amino acid modifications

    Feature keyPosition(s)DescriptionActionsGraphical viewLength
    <p>This subsection of the PTM / Processing":/help/ptm_processing_section section describes the positions of cysteine residues participating in disulfide bonds.<p><a href='/help/disulfid' target='_top'>More...</a></p>Disulfide bondi10 ↔ ?By similarity

    <p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

    N-glycosylated.By similarity

    Keywords - PTMi

    Disulfide bond, Glycoprotein

    <p>This section provides information on the expression of a gene at the mRNA or protein level in cells or in tissues of multicellular organisms.<p><a href='/help/expression_section' target='_top'>More...</a></p>Expressioni

    <p>This subsection of the ‘Expression’ section provides information on the expression of a gene at the mRNA or protein level in cells or in tissues of multicellular organisms. By default, the information is derived from experiments at the mRNA level, unless specified ‘at protein level’. <br></br>Examples: <a href="http://www.uniprot.org/uniprot/P92958#expression">P92958</a>, <a href="http://www.uniprot.org/uniprot/Q8TDN4#expression">Q8TDN4</a>, <a href="http://www.uniprot.org/uniprot/O14734#expression">O14734</a><p><a href='/help/tissue_specificity' target='_top'>More...</a></p>Tissue specificityi

    Expressed by the venom gland.1 Publication

    <p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

    <p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

    Homodimer; non-covalently linked.

    1 Publication

    <p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

    3D structure databases

    SWISS-MODEL Repository - a database of annotated 3D protein structure models

    More...
    SMRi
    P81375

    Database of comparative protein structure models

    More...
    ModBasei
    Search...

    <p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

    <p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

    <p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

    <p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Fragments.

    P81375-1 [UniParc]FASTAAdd to basket
    « Hide
            10         20         30         40         50
    ADDKNPLEEC FREDDYEEFL EIAKNGLEGW YANLGPMRYP VKPSEEGKHD
    60 70 80 90 100
    DIFAYEKFDE IVGGMDKKFW EDDGIHGGKE TFCYSPMIQK PYQFQHFSEA

    LTAPVGR
    Length:107
    Mass (Da):12,435
    Last modified:January 23, 2007 - v2
    <p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:i576D2F829779B412
    GO

    Experimental Info

    Feature keyPosition(s)DescriptionActionsGraphical viewLength
    <p>This subsection of the ‘Sequence’ section is used to indicate that two residues in a sequence are not consecutive and that there is an undetermined number of unsequenced residues between them.<p><a href='/help/non_cons' target='_top'>More...</a></p>Non-adjacent residuesi27 – 281 Publication2
    Non-adjacent residuesi38 – 391 Publication2
    Non-adjacent residuesi48 – 491 Publication2
    Non-adjacent residuesi57 – 581 Publication2
    Non-adjacent residuesi67 – 681 Publication2
    Non-adjacent residuesi79 – 801 Publication2
    Non-adjacent residuesi90 – 911 Publication2
    <p>This subsection of the ‘Sequence’ section is used for sequence fragments to indicate that the residue at the extremity of the sequence is not the actual terminal residue in the complete protein sequence.<p><a href='/help/non_ter' target='_top'>More...</a></p>Non-terminal residuei1071 Publication1

    <p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

    3D structure databases

    SMRiP81375
    ModBaseiSearch...

    Family and domain databases

    ProtoNet; Automatic hierarchical classification of proteins

    More...
    ProtoNeti
    Search...

    MobiDB: a database of protein disorder and mobility annotations

    More...
    MobiDBi
    Search...

    <p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

    <p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiOXLA_MACLB
    <p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: P81375
    <p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: July 15, 1998
    Last sequence update: January 23, 2007
    Last modified: December 11, 2019
    This is version 60 of the entry and version 2 of the sequence. See complete history.
    <p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
    Annotation programAnimal Toxin Annotation Program
    Annotation programChordata Protein Annotation Program

    <p>This section contains any relevant information that doesn’t fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

    Keywords - Technical termi

    Direct protein sequencing

    Documents

    1. SIMILARITY comments
      Index of protein domains and families
    UniProt is an ELIXIR core data resource
    Main funding by: National Institutes of Health

    We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

    Do not show this banner again