Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Protein

Potassium voltage-gated channel subfamily A member 2

Gene

Kcna2

Organism
Mus musculus (Mouse)
Status
Reviewed-Annotation score:

Annotation score:5 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at protein leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain and the central nervous system, but also in the cardiovascular system. Prevents aberrant action potential firing and regulates neuronal output. Forms tetrameric potassium-selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane (PubMed:12527813, PubMed:21233214). Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCNA1, KCNA2, KCNA4, KCNA5, KCNA6, KCNA7, and possibly other family members as well; channel properties depend on the type of alpha subunits that are part of the channel (PubMed:20696761). Channel properties are modulated by cytoplasmic beta subunits that regulate the subcellular location of the alpha subunits and promote rapid inactivation of delayed rectifier potassium channels (By similarity). In vivo, membranes probably contain a mixture of heteromeric potassium channel complexes, making it difficult to assign currents observed in intact tissues to any particular potassium channel family member. Homotetrameric KCNA2 forms a delayed-rectifier potassium channel that opens in response to membrane depolarization, followed by slow spontaneous channel closure (PubMed:23864368). In contrast, a heteromultimer formed by KCNA2 and KCNA4 shows rapid inactivation (PubMed:23864368). Contributes to the regulation of action potentials in neurons (PubMed:12527813, PubMed:17925011). KCNA2-containing channels play a presynaptic role and prevent hyperexcitability and aberrant action potential firing (PubMed:17634333, PubMed:17925011). Response to toxins that are selective for KCNA1, respectively for KCNA2, suggests that heteromeric potassium channels composed of both KCNA1 and KCNA2 play a role in pacemaking and regulate the output of deep cerebellar nuclear neurons (By similarity). Response to toxins that are selective for KCNA2-containing potassium channels suggests that in Purkinje cells, dendritic subthreshold KCNA2-containing potassium channels prevent random spontaneous calcium spikes, suppressing dendritic hyperexcitability without hindering the generation of somatic action potentials, and thereby play an important role in motor coordination (By similarity). KCNA2-containing channels play a role in GABAergic transmission from basket cells to Purkinje cells in the cerebellum, and thereby play an import role in motor coordination (PubMed:20696761). Plays a role in the induction of long-term potentiation of neuron excitability in the CA3 layer of the hippocampus (PubMed:23981714). May function as down-stream effector for G protein-coupled receptors and inhibit GABAergic inputs to basolateral amygdala neurons (By similarity). May contribute to the regulation of neurotransmitter release, such as gamma-aminobutyric acid (GABA) (By similarity). Contributes to the regulation of the axonal release of the neurotransmitter dopamine (PubMed:21233214). Reduced KCNA2 expression plays a role in the perception of neuropathic pain after peripheral nerve injury, but not acute pain (By similarity). Plays a role in the regulation of the time spent in non-rapid eye movement (NREM) sleep (PubMed:17925011).By similarityCurated7 Publications

Miscellaneous

Mutagenesis with N-ethyl-N-nitrosourea (ENU) lead to the discovery of the Pingu (Pgu) phenotype. At P21, heterozygous mice are clearly smaller than wild-type and have abnormal gait with a higher stance and splayed hind limbs. Homozygous mice are even smaller, and about half of them die between P15 and P35. Mutant mice have difficulty staing on a rotating rod and perform poorly in a beam-walking test, where they display flattened posture, severe tremors, myoclonic jerks and ataxic movement. These symptoms are alleviated by a drug used to treat cerebellar ataxia. Measurements with Purkinje cells from cerebellar brain slices show increased frequency and amplitude of spontaneous inhibitory postsynaptic currents.1 Publication
The delay or D-type current observed in hippocampus pyramidal neurons is probably mediated by potassium channels containing KCNA2 plus KCNA1 or other family members. It is activated at about -50 mV, i.e. below the action potential threshold, and is characterized by slow inactivation, extremely slow recovery from inactivation, sensitivity to dendrotoxin (DTX) and to 4-aminopyridine (4-AP).1 Publication

<p>This subsection of the ‘Function’ section describes regulatory mechanisms for enzymes, transporters or microbial transcription factors, and reports the components which regulate (by activation or inhibition) the reaction.<p><a href='/help/activity_regulation' target='_top'>More...</a></p>Activity regulationi

Inhibited by 4-aminopyridine (4-AP), dendrotoxin (DTX) and charybdotoxin (CTX), but not by tetraethylammonium (TEA) (By similarity). Inhibited by tityustoxin-K alpha (TsTX-Kalpha), a toxin that is highly specific for KCNA2 (By similarity). Inhibited by maurotoxin (PubMed:12527813). Inhibited by kappaM conotoxins kappaM-RIIIJ and kappaM-RIIIK (By similarity).By similarity1 Publication

<p>This subsection of the ‘Function’ section describes biophysical and chemical properties, such as maximal absorption, kinetic parameters, pH dependence, redox potentials and temperature dependence.<p><a href='/help/biophysicochemical_properties' target='_top'>More...</a></p>Kineticsi

Homotetrameric channels activate rapidly, i.e within a few msec, but inactivation is very slow, with only a marginal decrease in conductance over several seconds. The voltage-dependence of activation and inactivation and other channel characteristics vary depending on the experimental conditions, the expression system, post-translational modifications and the presence or absence of ancillary subunits. For the activation of homotetrameric channels expressed in Chinese hamster ovary (CHO) cells, the voltage at half-maximal amplitude is about -37 mV.1 Publication

      Sites

      Feature keyPosition(s)DescriptionActionsGraphical viewLength
      <p>This subsection describes interesting single amino acid sites on the sequence that are not defined in any other subsection. This subsection can be displayed in different sections (‘Function’, ‘PTM / Processing’, ‘Pathology and Biotech’) according to its content.<p><a href='/help/site' target='_top'>More...</a></p>Sitei252Important for normal, slow channel gatingBy similarity1
      Sitei381Important for binding with the scorpion mesomartoxin; when the scorpion mesomartoxin-rKv1.2/KCNA2 interaction is modeled, this residue is close to the 'Y-57' residue of the toxinBy similarity1

      <p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

      GO - Biological processi

      <p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

      Molecular functionIon channel, Potassium channel, Voltage-gated channel
      Biological processIon transport, Potassium transport, Transport
      LigandPotassium

      Enzyme and pathway databases

      Reactome - a knowledgebase of biological pathways and processes

      More...
      Reactomei
      R-MMU-1296072 Voltage gated Potassium channels

      <p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

      <p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
      Recommended name:
      Potassium voltage-gated channel subfamily A member 2
      Alternative name(s):
      MK21 Publication
      Voltage-gated potassium channel subunit Kv1.2
      <p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
      Name:Kcna2
      <p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiMus musculus (Mouse)
      <p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri10090 [NCBI]
      <p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresGliresRodentiaMyomorphaMuroideaMuridaeMurinaeMusMus
      <p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
      • UP000000589 <p>A UniProt <a href="http://www.uniprot.org/manual/proteomes_manual">proteome</a> can consist of several components. <br></br>The component name refers to the genomic component encoding a set of proteins.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Chromosome 3

      Organism-specific databases

      Mouse genome database (MGD) from Mouse Genome Informatics (MGI)

      More...
      MGIi
      MGI:96659 Kcna2

      <p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

      Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte; Source: COMPARTMENTS

      Topology

      Feature keyPosition(s)DescriptionActionsGraphical viewLength
      <p>This subsection of the <a href="http://www.uniprot.org/help/subcellular_location_section">'Subcellular location'</a> section describes the subcellular compartment where each non-membrane region of a membrane-spanning protein is found.<p><a href='/help/topo_dom' target='_top'>More...</a></p>Topological domaini1 – 160CytoplasmicBy similarityAdd BLAST160
      <p>This subsection of the <a href="http://www.uniprot.org/help/subcellular_location_section">'Subcellular location'</a> section describes the extent of a membrane-spanning region of the protein. It denotes the presence of both alpha-helical transmembrane regions and the membrane spanning regions of beta-barrel transmembrane proteins.<p><a href='/help/transmem' target='_top'>More...</a></p>Transmembranei161 – 182Helical; Name=Segment S1By similarityAdd BLAST22
      Topological domaini183 – 221ExtracellularBy similarityAdd BLAST39
      Transmembranei222 – 243Helical; Name=Segment S2By similarityAdd BLAST22
      Topological domaini244 – 254CytoplasmicBy similarityAdd BLAST11
      Transmembranei255 – 275Helical; Name=Segment S3By similarityAdd BLAST21
      Topological domaini276 – 289ExtracellularBy similarityAdd BLAST14
      Transmembranei290 – 310Helical; Voltage-sensor; Name=Segment S4By similarityAdd BLAST21
      Topological domaini311 – 325CytoplasmicBy similarityAdd BLAST15
      Transmembranei326 – 347Helical; Name=Segment S5By similarityAdd BLAST22
      Topological domaini348 – 361ExtracellularBy similarityAdd BLAST14
      <p>This subsection of the <a href="http://www.uniprot.org/help/subcellular_location_section">'Subcellular location'</a> section describes the extent of a region that is buried within a membrane, but does not cross it.<p><a href='/help/intramem' target='_top'>More...</a></p>Intramembranei362 – 373Helical; Name=Pore helixBy similarityAdd BLAST12
      Intramembranei374 – 381By similarity8
      Topological domaini382 – 388ExtracellularBy similarity7
      Transmembranei389 – 417Helical; Name=Segment S6By similarityAdd BLAST29
      Topological domaini418 – 499CytoplasmicBy similarityAdd BLAST82

      Keywords - Cellular componenti

      Cell junction, Cell membrane, Cell projection, Endoplasmic reticulum, Membrane, Synapse, Synaptosome

      <p>This section provides information on the disease(s) and phenotype(s) associated with a protein.<p><a href='/help/pathology_and_biotech_section' target='_top'>More...</a></p>Pathology & Biotechi

      <p>This subsection of the ‘Pathology and Biotech’ section describes the in vivo effects caused by ablation of the gene (or one or more transcripts) coding for the protein described in the entry. This includes gene knockout and knockdown, provided experiments have been performed in the context of a whole organism or a specific tissue, and not at the single-cell level.<p><a href='/help/disruption_phenotype' target='_top'>More...</a></p>Disruption phenotypei

      Pups are born at the expected Mendelian rate and appear normal during the first 14 days after birth. Starting at 14 to 17 days after birth, mice exhibit susceptibility to generalized seizures, followed by full tonic extension, which in mice often results in fatal apne. The average lifespan is 17 days; none survive more than 28 days (PubMed:17925011, PubMed:17634333). At P17 seizures are very rare and abnormal electroencephalograph activity is only present during the seizure. P17 pups have significantly less non-rapid eye movement (NREM) sleep (-23%) and significantly more waking (+21%) than wild-type siblings with no change in rapid eye movement (REM) sleep time. The decrease in NREM sleep is due to an increase in the number of waking episodes, with no change in number or duration of sleep episodes (PubMed:17925011). Auditory neurons from the medial nucleus of the trapezoid body in brain stem are hypoexcitable and fire fewer action potentials than wild-type neurons with significantly smaller threshold current amplitudes (PubMed:17634333). In the inner ear, spiral ganglion neurons display a hyperpolarized resting membrane potential, increased excitability and increased outward potassium currents; this might be because normally channels there are heterotetramers formed by KCNA2 and KCNA4, so the loss of KCNA2 changes channel characteristics (PubMed:23864368).3 Publications

      Mutagenesis

      Feature keyPosition(s)DescriptionActionsGraphical viewLength
      <p>This subsection of the <a href="http://www.uniprot.org/manual/pathology_and_biotech_section">'Pathology and Biotech'</a> section describes the effect of the experimental mutation of one or more amino acid(s) on the biological properties of the protein.<p><a href='/help/mutagen' target='_top'>More...</a></p>Mutagenesisi402I → T in Pgu; chronic motor incoordination; decreases the number of functional channels at the cell surface. 1 Publication1

      <p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

      Molecule processing

      Feature keyPosition(s)DescriptionActionsGraphical viewLength
      <p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00000539731 – 499Potassium voltage-gated channel subfamily A member 2Add BLAST499

      Amino acid modifications

      Feature keyPosition(s)DescriptionActionsGraphical viewLength
      <p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section specifies the position and type of each covalently attached glycan group (mono-, di-, or polysaccharide).<p><a href='/help/carbohyd' target='_top'>More...</a></p>Glycosylationi207N-linked (GlcNAc...) asparagineSequence analysis1
      <p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section specifies the position(s) and the type of covalently attached lipid group(s).<p><a href='/help/lipid' target='_top'>More...</a></p>Lipidationi244S-palmitoyl cysteineSequence analysis1
      <p>This subsection of the ‘PTM / Processing’ section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei429PhosphotyrosineCombined sources1
      Modified residuei434PhosphoserineCombined sources1
      Modified residuei440PhosphoserineCombined sources1
      Modified residuei441PhosphoserineBy similarity1
      Modified residuei449PhosphoserineBy similarity1
      Modified residuei458PhosphotyrosineBy similarity1
      Modified residuei468PhosphoserineCombined sources1

      <p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

      Phosphorylated on tyrosine residues; phosphorylation increases in response to ischemia (By similarity). Phosphorylated on tyrosine residues by activated PTK2B/PYK2 (By similarity). Phosphorylation on tyrosine residues suppresses ion channel activity (By similarity). Phosphorylated on tyrosine residues in response to CHRM1 activation; this abolishes interaction with CTTN. This is probably due to endocytosis of the phosphorylated channel subunits (By similarity). Phosphorylated on serine residues in response to increased cAMP levels; phosphorylation is apparently not catalyzed by PKA (By similarity).By similarity
      N-glycosylated, with complex, sialylated N-glycans.By similarity

      Keywords - PTMi

      Glycoprotein, Lipoprotein, Palmitate, Phosphoprotein

      Proteomic databases

      MaxQB - The MaxQuant DataBase

      More...
      MaxQBi
      P63141

      PaxDb, a database of protein abundance averages across all three domains of life

      More...
      PaxDbi
      P63141

      PeptideAtlas

      More...
      PeptideAtlasi
      P63141

      PRoteomics IDEntifications database

      More...
      PRIDEi
      P63141

      PTM databases

      iPTMnet integrated resource for PTMs in systems biology context

      More...
      iPTMneti
      P63141

      Comprehensive resource for the study of protein post-translational modifications (PTMs) in human, mouse and rat.

      More...
      PhosphoSitePlusi
      P63141

      <p>This section provides information on the expression of a gene at the mRNA or protein level in cells or in tissues of multicellular organisms.<p><a href='/help/expression_section' target='_top'>More...</a></p>Expressioni

      <p>This subsection of the ‘Expression’ section provides information on the expression of a gene at the mRNA or protein level in cells or in tissues of multicellular organisms. By default, the information is derived from experiments at the mRNA level, unless specified ‘at protein level’. <br></br>Examples: <a href="http://www.uniprot.org/uniprot/P92958#expression">P92958</a>, <a href="http://www.uniprot.org/uniprot/Q8TDN4#expression">Q8TDN4</a>, <a href="http://www.uniprot.org/uniprot/O14734#expression">O14734</a><p><a href='/help/tissue_specificity' target='_top'>More...</a></p>Tissue specificityi

      Detected in brain (PubMed:17634333). Detected in cerebellum (PubMed:20696761). Detected in mitral cells in the olfactory bulb (PubMed:8046438). Detected in cochlea (PubMed:23864368). Detected in cerebellum, particularly in the basket cell axon plexus and in the terminal regions around Purkinje cells (PubMed:8361541, PubMed:8046438, PubMed:18760366). Detected in juxtaparanodal regions in sciatic nerve (PubMed:22649228). Detected in Schwann cells from sciatic nerve (PubMed:9852577). Detected in dopamine neurons in substantia nigra (PubMed:21233214). Detected in large myelinated fibers in juxtaparanodes in the CA3 and CA1 areas of the hippocampus (PubMed:8046438, PubMed:18760366). Detected in brain, in punctae on fiber tracts in brain stem and spinal cord, and on axons in the juxtaparanodal regions of the node of Ranvier (at protein level) (PubMed:8361541). Detected in dopamine neurons in the midbrain (PubMed:21233214).8 Publications

      <p>This subsection of the ‘Expression’ section provides information on the expression of the gene product at various stages of a cell, tissue or organism development. By default, the information is derived from experiments at the mRNA level, unless specified ‘at the protein level’.<p><a href='/help/developmental_stage' target='_top'>More...</a></p>Developmental stagei

      Detected at low levels in brainstem from neonates; increases tenfold during the first 29 days after birth.1 Publication

      Gene expression databases

      Bgee dataBase for Gene Expression Evolution

      More...
      Bgeei
      ENSMUSG00000040724 Expressed in 175 organ(s), highest expression level in brainstem

      Genevisible search portal to normalized and curated expression data from Genevestigator

      More...
      Genevisiblei
      P63141 MM

      <p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

      <p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

      Homotetramer and heterotetramer with other channel-forming alpha subunits, such as KCNA1, KCNA4, KCNA5, KCNA6 and KCNA7 (PubMed:8361541, PubMed:9852577, PubMed:23864368). Channel activity is regulated by interaction with beta subunits, including KCNAB1 and KCNAB2 (By similarity). Identified in a complex with KCNA1 and KCNAB2 (By similarity). Identified in a complex with KCNA5 and KCNAB1 (By similarity). Identified in a complex with KCNA4 and FYN (By similarity). Interacts with PTK2B (By similarity). Interacts (via C-terminus) with CTTN (By similarity). Interacts with ADAM22 (By similarity). Interacts with CNTNAP2 (By similarity). Interacts (via C-terminus) with the PDZ domains of DLG1, DLG2 and DLG4 (By similarity). Interacts (via N-terminal cytoplasmic domain) with RHOA (GTP-bound form); this regulates channel activity by reducing location at the cell surface in response to CHRM1 activation (PubMed:9635436). Interacts with DRD2 (PubMed:21233214). Interacts with SIGMAR1; cocaine consumption leads to increased interaction (PubMed:23332758).By similarityCurated6 Publications

      <p>This subsection of the '<a href="http://www.uniprot.org/help/interaction_section%27">Interaction</a> section provides information about binary protein-protein interactions. The data presented in this section are a quality-filtered subset of binary interactions automatically derived from the <a href="http://www.ebi.ac.uk/intact/">IntAct database</a>. It is updated on a monthly basis. Each binary interaction is displayed on a separate line.<p><a href='/help/binary_interactions' target='_top'>More...</a></p>Binary interactionsi

      GO - Molecular functioni

      Protein-protein interaction databases

      The Biological General Repository for Interaction Datasets (BioGrid)

      More...
      BioGridi
      200877, 5 interactors

      Database of interacting proteins

      More...
      DIPi
      DIP-32239N

      Protein interaction database and analysis system

      More...
      IntActi
      P63141, 7 interactors

      STRING: functional protein association networks

      More...
      STRINGi
      10090.ENSMUSP00000041702

      <p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

      3D structure databases

      Select the link destinations:

      Protein Data Bank Europe

      More...
      PDBei

      Protein Data Bank RCSB

      More...
      RCSB PDBi

      Protein Data Bank Japan

      More...
      PDBji
      Links Updated
      PDB entryMethodResolution (Å)ChainPositionsPDBsum
      5WIEX-ray3.30B/H266-279[»]

      Protein Model Portal of the PSI-Nature Structural Biology Knowledgebase

      More...
      ProteinModelPortali
      P63141

      SWISS-MODEL Repository - a database of annotated 3D protein structure models

      More...
      SMRi
      P63141

      Database of comparative protein structure models

      More...
      ModBasei
      Search...

      MobiDB: a database of protein disorder and mobility annotations

      More...
      MobiDBi
      Search...

      <p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

      Region

      Feature keyPosition(s)DescriptionActionsGraphical viewLength
      <p>This subsection of the ‘Family and Domains’ section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni1 – 125Tetramerization domainBy similarityAdd BLAST125
      Regioni312 – 325S4-S5 linkerBy similarityAdd BLAST14

      Motif

      Feature keyPosition(s)DescriptionActionsGraphical viewLength
      <p>This subsection of the ‘Family and Domains’ section describes a short (usually not more than 20 amino acids) conserved sequence motif of biological significance.<p><a href='/help/motif' target='_top'>More...</a></p>Motifi374 – 379Selectivity filterBy similarity6
      Motifi497 – 499PDZ-bindingBy similarity3

      <p>This subsection of the ‘Family and domains’ section provides general information on the biological role of a domain. The term ‘domain’ is intended here in its wide acceptation, it may be a structural domain, a transmembrane region or a functional domain. Several domains are described in this subsection.<p><a href='/help/domain_cc' target='_top'>More...</a></p>Domaini

      The cytoplasmic N-terminus is important for tetramerization. Interactions between the different subunits modulate the gating characteristics (By similarity). Besides, the cytoplasmic N-terminal domain mediates interaction with RHOA and thus is required for RHOA-mediated endocytosis (By similarity).By similarity
      The transmembrane segment S4 functions as voltage-sensor and is characterized by a series of positively charged amino acids at every third position. Channel opening and closing is effected by a conformation change that affects the position and orientation of the voltage-sensor paddle formed by S3 and S4 within the membrane. A transmembrane electric field that is positive inside would push the positively charged S4 segment outwards, thereby opening the pore, while a field that is negative inside would pull the S4 segment inwards and close the pore. Changes in the position and orientation of S4 are then transmitted to the activation gate formed by the inner helix bundle via the S4-S5 linker region.By similarity

      <p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

      Keywords - Domaini

      Transmembrane, Transmembrane helix

      Phylogenomic databases

      evolutionary genealogy of genes: Non-supervised Orthologous Groups

      More...
      eggNOGi
      KOG1545 Eukaryota
      COG1226 LUCA

      Ensembl GeneTree

      More...
      GeneTreei
      ENSGT00940000158688

      The HOGENOM Database of Homologous Genes from Fully Sequenced Organisms

      More...
      HOGENOMi
      HOG000231015

      The HOVERGEN Database of Homologous Vertebrate Genes

      More...
      HOVERGENi
      HBG052230

      InParanoid: Eukaryotic Ortholog Groups

      More...
      InParanoidi
      P63141

      KEGG Orthology (KO)

      More...
      KOi
      K04875

      Identification of Orthologs from Complete Genome Data

      More...
      OMAi
      GMTFHTY

      Database of Orthologous Groups

      More...
      OrthoDBi
      695337at2759

      Database for complete collections of gene phylogenies

      More...
      PhylomeDBi
      P63141

      TreeFam database of animal gene trees

      More...
      TreeFami
      TF313103

      Family and domain databases

      Gene3D Structural and Functional Annotation of Protein Families

      More...
      Gene3Di
      1.20.120.350, 1 hit

      Integrated resource of protein families, domains and functional sites

      More...
      InterProi
      View protein in InterPro
      IPR000210 BTB/POZ_dom
      IPR005821 Ion_trans_dom
      IPR003968 K_chnl_volt-dep_Kv
      IPR003972 K_chnl_volt-dep_Kv1
      IPR004049 K_chnl_volt-dep_Kv1.2
      IPR011333 SKP1/BTB/POZ_sf
      IPR003131 T1-type_BTB
      IPR028325 VG_K_chnl
      IPR027359 Volt_channel_dom_sf

      The PANTHER Classification System

      More...
      PANTHERi
      PTHR11537 PTHR11537, 1 hit
      PTHR11537:SF23 PTHR11537:SF23, 1 hit

      Pfam protein domain database

      More...
      Pfami
      View protein in Pfam
      PF02214 BTB_2, 1 hit
      PF00520 Ion_trans, 1 hit

      Protein Motif fingerprint database; a protein domain database

      More...
      PRINTSi
      PR00169 KCHANNEL
      PR01509 KV12CHANNEL
      PR01491 KVCHANNEL
      PR01496 SHAKERCHANEL

      Simple Modular Architecture Research Tool; a protein domain database

      More...
      SMARTi
      View protein in SMART
      SM00225 BTB, 1 hit

      Superfamily database of structural and functional annotation

      More...
      SUPFAMi
      SSF54695 SSF54695, 1 hit

      <p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>.<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

      <p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

      P63141-1 [UniParc]FASTAAdd to basket
      « Hide
              10         20         30         40         50
      MTVATGDPVD EAAALPGHPQ DTYDPEADHE CCERVVINIS GLRFETQLKT
      60 70 80 90 100
      LAQFPETLLG DPKKRMRYFD PLRNEYFFDR NRPSFDAILY YYQSGGRLRR
      110 120 130 140 150
      PVNVPLDIFS EEIRFYELGE EAMEMFREDE GYIKEEERPL PENEFQRQVW
      160 170 180 190 200
      LLFEYPESSG PARIIAIVSV MVILISIVSF CLETLPIFRD ENEDMHGGGV
      210 220 230 240 250
      TFHTYSNSTI GYQQSTSFTD PFFIVETLCI IWFSFEFLVR FFACPSKAGF
      260 270 280 290 300
      FTNIMNIIDI VAIIPYFITL GTELAEKPED AQQGQQAMSL AILRVIRLVR
      310 320 330 340 350
      VFRIFKLSRH SKGLQILGQT LKASMRELGL LIFFLFIGVI LFSSAVYFAE
      360 370 380 390 400
      ADERDSQFPS IPDAFWWAVV SMTTVGYGDM VPTTIGGKIV GSLCAIAGVL
      410 420 430 440 450
      TIALPVPVIV SNFNYFYHRE TEGEEQAQYL QVTSCPKIPS SPDLKKSRSA
      460 470 480 490
      STISKSDYME IQEGVNNSNE DFREENLKTA NCTLANTNYV NITKMLTDV
      Length:499
      Mass (Da):56,701
      Last modified:September 13, 2004 - v1
      <p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:iA8FEA6F3F59AF42A
      GO

      Experimental Info

      Feature keyPosition(s)DescriptionActionsGraphical viewLength
      <p>This subsection of the ‘Sequence’ section reports difference(s) between the canonical sequence (displayed by default in the entry) and the different sequence submissions merged in the entry. These various submissions may originate from different sequencing projects, different types of experiments, or different biological samples. Sequence conflicts are usually of unknown origin.<p><a href='/help/conflict' target='_top'>More...</a></p>Sequence conflicti33E → G in BAC31877 (PubMed:16141072).Curated1

      Sequence databases

      Select the link destinations:

      EMBL nucleotide sequence database

      More...
      EMBLi

      GenBank nucleotide sequence database

      More...
      GenBanki

      DNA Data Bank of Japan; a nucleotide sequence database

      More...
      DDBJi
      Links Updated
      M30440 Genomic DNA Translation: AAA39713.1
      AK044342 mRNA Translation: BAC31877.1
      CH466607 Genomic DNA Translation: EDL01892.1
      BC138650 mRNA Translation: AAI38651.1
      BC138651 mRNA Translation: AAI38652.1

      The Consensus CDS (CCDS) project

      More...
      CCDSi
      CCDS17733.1

      Protein sequence database of the Protein Information Resource

      More...
      PIRi
      B40090 I84204

      NCBI Reference Sequences

      More...
      RefSeqi
      NP_032443.3, NM_008417.5
      XP_006501111.1, XM_006501048.3
      XP_006501112.1, XM_006501049.3
      XP_006501113.1, XM_006501050.3
      XP_006501114.1, XM_006501051.3
      XP_006501115.1, XM_006501052.3
      XP_006501116.1, XM_006501053.3
      XP_006501117.1, XM_006501054.3
      XP_006501118.1, XM_006501055.3

      UniGene gene-oriented nucleotide sequence clusters

      More...
      UniGenei
      Mm.39285

      Genome annotation databases

      Ensembl eukaryotic genome annotation project

      More...
      Ensembli
      ENSMUST00000038695; ENSMUSP00000041702; ENSMUSG00000040724
      ENSMUST00000196403; ENSMUSP00000142873; ENSMUSG00000040724
      ENSMUST00000197470; ENSMUSP00000143798; ENSMUSG00000040724

      Database of genes from NCBI RefSeq genomes

      More...
      GeneIDi
      16490

      KEGG: Kyoto Encyclopedia of Genes and Genomes

      More...
      KEGGi
      mmu:16490

      UCSC genome browser

      More...
      UCSCi
      uc008qws.2 mouse

      <p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

      <p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

      Sequence databases

      Select the link destinations:
      EMBLi
      GenBanki
      DDBJi
      Links Updated
      M30440 Genomic DNA Translation: AAA39713.1
      AK044342 mRNA Translation: BAC31877.1
      CH466607 Genomic DNA Translation: EDL01892.1
      BC138650 mRNA Translation: AAI38651.1
      BC138651 mRNA Translation: AAI38652.1
      CCDSiCCDS17733.1
      PIRiB40090 I84204
      RefSeqiNP_032443.3, NM_008417.5
      XP_006501111.1, XM_006501048.3
      XP_006501112.1, XM_006501049.3
      XP_006501113.1, XM_006501050.3
      XP_006501114.1, XM_006501051.3
      XP_006501115.1, XM_006501052.3
      XP_006501116.1, XM_006501053.3
      XP_006501117.1, XM_006501054.3
      XP_006501118.1, XM_006501055.3
      UniGeneiMm.39285

      3D structure databases

      Select the link destinations:
      PDBei
      RCSB PDBi
      PDBji
      Links Updated
      PDB entryMethodResolution (Å)ChainPositionsPDBsum
      5WIEX-ray3.30B/H266-279[»]
      ProteinModelPortaliP63141
      SMRiP63141
      ModBaseiSearch...
      MobiDBiSearch...

      Protein-protein interaction databases

      BioGridi200877, 5 interactors
      DIPiDIP-32239N
      IntActiP63141, 7 interactors
      STRINGi10090.ENSMUSP00000041702

      PTM databases

      iPTMnetiP63141
      PhosphoSitePlusiP63141

      Proteomic databases

      MaxQBiP63141
      PaxDbiP63141
      PeptideAtlasiP63141
      PRIDEiP63141

      Protocols and materials databases

      Structural Biology KnowledgebaseSearch...

      Genome annotation databases

      EnsembliENSMUST00000038695; ENSMUSP00000041702; ENSMUSG00000040724
      ENSMUST00000196403; ENSMUSP00000142873; ENSMUSG00000040724
      ENSMUST00000197470; ENSMUSP00000143798; ENSMUSG00000040724
      GeneIDi16490
      KEGGimmu:16490
      UCSCiuc008qws.2 mouse

      Organism-specific databases

      Comparative Toxicogenomics Database

      More...
      CTDi
      3737
      MGIiMGI:96659 Kcna2

      Phylogenomic databases

      eggNOGiKOG1545 Eukaryota
      COG1226 LUCA
      GeneTreeiENSGT00940000158688
      HOGENOMiHOG000231015
      HOVERGENiHBG052230
      InParanoidiP63141
      KOiK04875
      OMAiGMTFHTY
      OrthoDBi695337at2759
      PhylomeDBiP63141
      TreeFamiTF313103

      Enzyme and pathway databases

      ReactomeiR-MMU-1296072 Voltage gated Potassium channels

      Miscellaneous databases

      ChiTaRS: a database of human, mouse and fruit fly chimeric transcripts and RNA-sequencing data

      More...
      ChiTaRSi
      Kcna2 mouse

      Protein Ontology

      More...
      PROi
      PR:P63141

      The Stanford Online Universal Resource for Clones and ESTs

      More...
      SOURCEi
      Search...

      Gene expression databases

      BgeeiENSMUSG00000040724 Expressed in 175 organ(s), highest expression level in brainstem
      GenevisibleiP63141 MM

      Family and domain databases

      Gene3Di1.20.120.350, 1 hit
      InterProiView protein in InterPro
      IPR000210 BTB/POZ_dom
      IPR005821 Ion_trans_dom
      IPR003968 K_chnl_volt-dep_Kv
      IPR003972 K_chnl_volt-dep_Kv1
      IPR004049 K_chnl_volt-dep_Kv1.2
      IPR011333 SKP1/BTB/POZ_sf
      IPR003131 T1-type_BTB
      IPR028325 VG_K_chnl
      IPR027359 Volt_channel_dom_sf
      PANTHERiPTHR11537 PTHR11537, 1 hit
      PTHR11537:SF23 PTHR11537:SF23, 1 hit
      PfamiView protein in Pfam
      PF02214 BTB_2, 1 hit
      PF00520 Ion_trans, 1 hit
      PRINTSiPR00169 KCHANNEL
      PR01509 KV12CHANNEL
      PR01491 KVCHANNEL
      PR01496 SHAKERCHANEL
      SMARTiView protein in SMART
      SM00225 BTB, 1 hit
      SUPFAMiSSF54695 SSF54695, 1 hit

      ProtoNet; Automatic hierarchical classification of proteins

      More...
      ProtoNeti
      Search...

      <p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

      <p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiKCNA2_MOUSE
      <p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: P63141
      Secondary accession number(s): B2RS05
      , P15386, Q02010, Q8C8W4
      <p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: September 13, 2004
      Last sequence update: September 13, 2004
      Last modified: January 16, 2019
      This is version 154 of the entry and version 1 of the sequence. See complete history.
      <p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
      Annotation programChordata Protein Annotation Program

      <p>This section contains any relevant information that doesn’t fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

      Keywords - Technical termi

      3D-structure, Complete proteome, Reference proteome

      Documents

      1. SIMILARITY comments
        Index of protein domains and families
      2. MGD cross-references
        Mouse Genome Database (MGD) cross-references in UniProtKB/Swiss-Prot
      3. PDB cross-references
        Index of Protein Data Bank (PDB) cross-references
      UniProt is an ELIXIR core data resource
      Main funding by: National Institutes of Health

      We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

      Do not show this banner again