Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 80 (02 Jun 2021)
Sequence version 1 (24 May 2004)
Previous versions | rss
Add a publicationFeedback
Protein

Syncytin-1

Gene

ERVW-1

Organism
Gorilla gorilla gorilla (Western lowland gorilla)
Status
Reviewed-Annotation score:

Annotation score:4 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the 'correct annotation' for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Protein inferred from homologyi <p>This indicates the type of evidence that supports the existence of the protein. Note that the 'protein existence' evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

This endogenous retroviral envelope protein has retained its original fusogenic properties and participates in trophoblast fusion and the formation of a syncytium during placenta morphogenesis. May recognize and induce fusion through binding of SLC1A4 and SLC1A5 (By similarity).

By similarity

Endogenous envelope proteins may have kept, lost or modified their original function during evolution. Retroviral envelope proteins mediate receptor recognition and membrane fusion during early infection. The surface protein (SU) mediates receptor recognition, while the transmembrane protein (TM) acts as a class I viral fusion protein. The protein may have at least 3 conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of membranes (By similarity).

By similarity

Miscellaneous

Ortholog of the human HERV-W_7q21.2 envelope protein.
The genome contains a high percentage of proviral-like elements, also called endogenous retroviruses (ERVs) that are the genomic traces of ancient infections of the germline by exogenous retroviruses. Although most of these elements are defective, some have conserved a functional envelope (env) gene, most probably diverted by the host for its benefit.

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Biological processi

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Syncytin-1
Alternative name(s):
ERV-W1 provirus ancestral Env polyprotein
ERVWE1 envelope protein
Endogenous retrovirus group W member 1
Envelope polyprotein
Syncytin
Cleaved into the following 2 chains:
Surface protein
Short name:
SU
Transmembrane protein
Short name:
TM
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: 'Name', 'Synonyms', 'Ordered locus names' and 'ORF names'.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:ERVW-1
Synonyms:ERVWE1
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiGorilla gorilla gorilla (Western lowland gorilla)
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the 'taxonomic identifier' or 'taxid'.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri9595 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresPrimatesHaplorrhiniCatarrhiniHominidaeGorilla
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
  • UP000001519 <p>A UniProt <a href="http://www.uniprot.org/manual/proteomes_manual">proteome</a> can consist of several components.<br></br>The component name refers to the genomic component encoding a set of proteins.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Unplaced

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Topology

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/subcellular_location_section">'Subcellular location'</a> section describes the subcellular compartment where each non-membrane region of a membrane-spanning protein is found.<p><a href='/help/topo_dom' target='_top'>More...</a></p>Topological domaini21 – 443ExtracellularSequence analysisAdd BLAST423
<p>This subsection of the <a href="http://www.uniprot.org/help/subcellular_location_section">'Subcellular location'</a> section describes the extent of a membrane-spanning region of the protein. It denotes the presence of both alpha-helical transmembrane regions and the membrane spanning regions of beta-barrel transmembrane proteins.<p><a href='/help/transmem' target='_top'>More...</a></p>Transmembranei444 – 464HelicalSequence analysisAdd BLAST21
Topological domaini465 – 538CytoplasmicSequence analysisAdd BLAST74

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywords - Cellular componenti

Cell membrane, Membrane, Viral envelope protein, Virion

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the 'PTM / Processing' section denotes the presence of an N-terminal signal peptide.<p><a href='/help/signal' target='_top'>More...</a></p>Signal peptidei1 – 20Sequence analysisAdd BLAST20
<p>This subsection of the 'PTM / Processing' section describes the extent of a polypeptide chain in the mature protein following processing or proteolytic cleavage.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_000000848221 – 538Syncytin-1Add BLAST518
ChainiPRO_000000848321 – 317Surface proteinBy similarityAdd BLAST297
ChainiPRO_0000008484318 – 538Transmembrane proteinBy similarityAdd BLAST221

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section specifies the position and type of each covalently attached glycan group (mono-, di-, or polysaccharide).<p><a href='/help/carbohyd' target='_top'>More...</a></p>Glycosylationi169N-linked (GlcNAc...) asparagineSequence analysis1
<p>This subsection of the PTM / Processing":/help/ptm_processing_section section describes the positions of cysteine residues participating in disulfide bonds.<p><a href='/help/disulfid' target='_top'>More...</a></p>Disulfide bondi186 ↔ 405Interchain (between SU and TM chains, or C-189 with C-405); in linked formBy similarity
Disulfide bondi186 ↔ 189By similarity
Glycosylationi208N-linked (GlcNAc...) asparagineSequence analysis1
Glycosylationi214N-linked (GlcNAc...) asparagineSequence analysis1
Glycosylationi234N-linked (GlcNAc...) asparagineSequence analysis1
Glycosylationi281N-linked (GlcNAc...) asparagineSequence analysis1
Disulfide bondi397 ↔ 404By similarity
Glycosylationi409N-linked (GlcNAc...) asparagineSequence analysis1

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

Specific enzymatic cleavages in vivo yield mature proteins. Envelope glycoproteins are synthesized as an inactive precursor that is heavily N-glycosylated and processed likely by furin in the Golgi to yield the mature SU and TM proteins. The cleavage site between SU and TM requires the minimal sequence [KR]-X-[KR]-R (By similarity).By similarity
The CXXC motif is highly conserved across a broad range of retroviral envelope proteins. It is thought to participate in the formation of a labile disulfide bond possibly with the CX6CC motif present in the transmembrane protein (By similarity).By similarity

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection describes interesting single amino acid sites on the sequence that are not defined in any other subsection. This subsection can be displayed in different sections ('Function', 'PTM / Processing', 'Pathology and Biotech') according to its content.<p><a href='/help/site' target='_top'>More...</a></p>Sitei317 – 318CleavageBy similarity2

Keywords - PTMi

Cleavage on pair of basic residues, Disulfide bond, Glycoprotein

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

The mature envelope protein (Env) consists of a trimer of SU-TM heterodimers attached probably by a labile interchain disulfide bond.

Interacts with the C-type lectin CD209/DC-SIGN (By similarity).

By similarity

<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

3D structure databases

SWISS-MODEL Repository - a database of annotated 3D protein structure models

More...
SMRi
P61561

Database of comparative protein structure models

More...
ModBasei
Search...

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Region

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the 'Family and Domains' section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni320 – 340Fusion peptideSequence analysisAdd BLAST21
Regioni380 – 396ImmunosuppressionBy similarityAdd BLAST17
Regioni465 – 484Essential for the fusiogenic functionBy similarityAdd BLAST20
Regioni496 – 538DisorderedSequence analysisAdd BLAST43

Motif

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the 'Family and Domains' section describes a short (usually not more than 20 amino acids) conserved sequence motif of biological significance.<p><a href='/help/motif' target='_top'>More...</a></p>Motifi186 – 189CXXCCurated4
Motifi397 – 405CX6CCCurated9

Compositional bias

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the 'Family and Domains' section describes the position of regions of compositional bias within the protein and the particular type of amino acids that are over-represented within those regions.<p><a href='/help/compbias' target='_top'>More...</a></p>Compositional biasi496 – 510Basic and acidic residuesSequence analysisAdd BLAST15

<p>This subsection of the 'Family and domains' section provides general information on the biological role of a domain. The term 'domain' is intended here in its wide acceptation, it may be a structural domain, a transmembrane region or a functional domain. Several domains are described in this subsection.<p><a href='/help/domain_cc' target='_top'>More...</a></p>Domaini

The cytoplasmic region is essential for the fusiogenic function.By similarity
The 17 amino acids long immunosuppressive region is present in many retroviral envelope proteins. Synthetic peptides derived from this relatively conserved sequence inhibit immune function in vitro and in vivo (By similarity).By similarity

<p>This subsection of the 'Family and domains' section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Keywords - Domaini

Signal, Transmembrane, Transmembrane helix

Phylogenomic databases

InParanoid: Eukaryotic Ortholog Groups

More...
InParanoidi
P61561

Database of Orthologous Groups

More...
OrthoDBi
925621at2759

Family and domain databases

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR018154, TLV/ENV_coat_polyprotein

The PANTHER Classification System

More...
PANTHERi
PTHR10424, PTHR10424, 1 hit

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF00429, TLV_coat, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is in its mature form or if it represents the precursor.<p><a href='/help/sequence_processing' target='_top'>More...</a></p>Sequence processingi: The displayed sequence is further processed into a mature form.

P61561-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MALPYHILLF TVLLPSFTLT APPPCRCMTS SSPYQEFLWR MRRPGNIDAP
60 70 80 90 100
SHRSFSKGTP TFTAHTHMPR NCYNSATLCM HANTHYWTGK MINPSCPGGL
110 120 130 140 150
GVTVCWTYFT HTGMSDGGGV QDQAREKHVK EVISQLTRVH STSSPYKGLD
160 170 180 190 200
LSKLHETLRT HTRLVSLFNT TLTGLHEVSA QNPTNCWICL PLDFRPYVSI
210 220 230 240 250
PVPEEWNNFS TEINTTSVLV GPLVSNLEIT HTSNLTCVKF SNTIDTTNSQ
260 270 280 290 300
CIRWVTPPTQ IVCLPSGIFF VCGTSAYRCL NGSSESMCFL SFLVPPMTIY
310 320 330 340 350
TEQDLYNYVV SKPRNKRVPI LPFVIGAGVL GALGTGIGGI TTSTQFYYKL
360 370 380 390 400
SQELNGDMER VADSLVTLQD QLNSLAAVVL QNRRALDLLT AERGGTCLFL
410 420 430 440 450
GEECCYYVNQ SGIVTEKVKE IRDRIQRRAE ELRNTGPWGL LSQWMPWILP
460 470 480 490 500
FLGPLAAIIL LLLFGPCIFN LLVNFVSSRI EAVKLQMEPK MQSKTKIYRR
510 520 530
PLDRPASPRS DVNDIKCTPP EEISTAQPLL RPNSAGSS
Length:538
Mass (Da):59,939
Last modified:May 24, 2004 - v1
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:i95D4393FEDE196F3
GO

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
AY101588 Genomic DNA Translation: AAM68167.1
AY101589 Genomic DNA Translation: AAM68168.1
DQ256474 Genomic DNA Translation: ABB73024.1

NCBI Reference Sequences

More...
RefSeqi
NP_001291470.1, NM_001304541.1

Genome annotation databases

Database of genes from NCBI RefSeq genomes

More...
GeneIDi
105221760

KEGG: Kyoto Encyclopedia of Genes and Genomes

More...
KEGGi
ggo:105221760

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
AY101588 Genomic DNA Translation: AAM68167.1
AY101589 Genomic DNA Translation: AAM68168.1
DQ256474 Genomic DNA Translation: ABB73024.1
RefSeqiNP_001291470.1, NM_001304541.1

3D structure databases

SMRiP61561
ModBaseiSearch...

Genome annotation databases

GeneIDi105221760
KEGGiggo:105221760

Organism-specific databases

Comparative Toxicogenomics Database

More...
CTDi
30816

Phylogenomic databases

InParanoidiP61561
OrthoDBi925621at2759

Family and domain databases

InterProiView protein in InterPro
IPR018154, TLV/ENV_coat_polyprotein
PANTHERiPTHR10424, PTHR10424, 1 hit
PfamiView protein in Pfam
PF00429, TLV_coat, 1 hit

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the 'Entry information' section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiSYCY1_GORGO
<p>This subsection of the 'Entry information' section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called 'Primary (citable) accession number'.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: P61561
Secondary accession number(s): Q2XSV0
<p>This subsection of the 'Entry information' section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification ('Last modified'). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: May 24, 2004
Last sequence update: May 24, 2004
Last modified: June 2, 2021
This is version 80 of the entry and version 1 of the sequence. See complete history.
<p>This subsection of the 'Entry information' section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

<p>This section contains any relevant information that doesn't fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

ERV, Reference proteome, Transposable element

Documents

  1. SIMILARITY comments
    Index of protein domains and families
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again