Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Protein

Structural polyprotein

Gene
N/A
Organism
Venezuelan equine encephalitis virus (strain 3880) (VEEV)
Status
Reviewed-Annotation score:

Annotation score:5 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Protein inferred from homologyi <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Capsid protein: Possesses a protease activity that results in its autocatalytic cleavage from the nascent structural protein. Following its self-cleavage, the capsid protein transiently associates with ribosomes, and within several minutes the protein binds to viral RNA and rapidly assembles into icosahedric core particles. The resulting nucleocapsid eventually associates with the cytoplasmic domain of the spike glycoprotein E2 at the cell membrane, leading to budding and formation of mature virions. In case of infection, new virions attach to target cells and after clathrin-mediated endocytosis their membrane fuses with the host endosomal membrane. This leads to the release of the nucleocapsid into the cytoplasm, followed by an uncoating event necessary for the genomic RNA to become accessible. The uncoating might be triggered by the interaction of capsid proteins with ribosomes. Binding of ribosomes would release the genomic RNA since the same region is genomic RNA-binding and ribosome-binding.By similarity
Assembly protein E3: Provides the signal sequence for the translocation of the precursor of protein E3/E2 to the host endoplasmic reticulum. Mediates pH protection of spike glycoprotein E1 during the transport via the secretory pathway.By similarity
Spike glycoprotein E2: Plays a role in viral attachment to target host cell, by binding to the cell receptor. Synthesized as a p62 precursor which is processed by furin at the cell membrane just before virion budding, giving rise to E2-E1 heterodimer. The p62-E1 heterodimer is stable, whereas E2-E1 is unstable and dissociate at low pH. p62 is processed at the last step, presumably to avoid E1 fusion activation before its final export to cell surface. E2 C-terminus contains a transitory transmembrane that would be disrupted by palmitoylation, resulting in reorientation of the C-terminal tail from lumenal to cytoplasmic side. This step is critical since E2 C-terminus is involved in budding by interacting with capsid proteins. This release of E2 C-terminus in cytoplasm occurs lately in protein export, and precludes premature assembly of particles at the endoplasmic reticulum membrane.By similarity
6K protein: Constitutive membrane protein involved in virus glycoprotein processing, cell permeabilization, and the budding of viral particles. Disrupts the calcium homeostasis of the cell, probably at the endoplasmic reticulum level. This leads to cytoplasmic calcium elevation. Because of its lipophilic properties, the 6K protein is postulated to influence the selection of lipids that interact with the transmembrane domains of the glycoproteins, which, in turn, affects the deformability of the bilayer required for the extreme curvature that occurs as budding proceeds. Present in low amount in virions, about 3% compared to viral glycoproteins.By similarity
Spike glycoprotein E1: Class II viral fusion protein. Fusion activity is inactive as long as E1 is bound to E2 in mature virion. After virus attachment to target cell and endocytosis, acidification of the endosome would induce dissociation of E1/E2 heterodimer and concomitant trimerization of the E1 subunits. This E1 trimer is fusion active, and promotes release of viral nucleocapsid in cytoplasm after endosome and viral membrane fusion. Efficient fusion requires the presence of cholesterol and sphingolipid in the target membrane. Fusion is optimal at levels of about 1 molecule of cholesterol per 2 molecules of phospholipids, and is specific for sterols containing a 3-beta-hydroxyl group.By similarity

Miscellaneous

Structural polyprotein: Translated from a subgenomic RNA synthesized during togavirus replication.By similarity

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes the catalytic activity of an enzyme, i.e. a chemical reaction that the enzyme catalyzes.<p><a href='/help/catalytic_activity' target='_top'>More...</a></p>Catalytic activityi

  • Autocatalytic release of the core protein from the N-terminus of the togavirus structural polyprotein by hydrolysis of a -Trp-|-Ser- bond.By similarity EC:3.4.21.90

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Function’ section is used for enzymes and indicates the residues directly involved in catalysis.<p><a href='/help/act_site' target='_top'>More...</a></p>Active sitei152Charge relay systemPROSITE-ProRule annotation1
Active sitei174Charge relay systemPROSITE-ProRule annotation1
Active sitei226Charge relay systemPROSITE-ProRule annotation1

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionHydrolase, Protease, Serine protease
Biological processClathrin-mediated endocytosis of virus by host, Fusion of virus membrane with host endosomal membrane, Fusion of virus membrane with host membrane, Host-virus interaction, Viral attachment to host cell, Viral penetration into host cytoplasm, Virus endocytosis by host, Virus entry into host cell

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Structural polyprotein
Alternative name(s):
p130
Cleaved into the following 6 chains:
Alternative name(s):
Coat protein
Short name:
C
Alternative name(s):
p62
pE2
Alternative name(s):
E2 envelope glycoprotein
Alternative name(s):
E1 envelope glycoprotein
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiVenezuelan equine encephalitis virus (strain 3880) (VEEV)
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri36382 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiVirusesssRNA virusesssRNA positive-strand viruses, no DNA stageTogaviridaeAlphavirus
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section only exists in viral entries and indicates the host(s) either as a specific organism or taxonomic group of organisms that are susceptible to be infected by a virus.<p><a href='/help/virus_host' target='_top'>More...</a></p>Virus hostiBos taurus (Bovine) [TaxID: 9913]
Didelphis marsupialis (Southern opossum) [TaxID: 9268]
Equus asinus (Donkey) (Equus africanus asinus) [TaxID: 9793]
Equus caballus (Horse) [TaxID: 9796]
Homo sapiens (Human) [TaxID: 9606]
Melanoconion [TaxID: 53535]
Philander opossum (Gray four-eyed opossum) [TaxID: 9272]
Proechimys [TaxID: 10162]
Sigmodon hispidus (Hispid cotton rat) [TaxID: 42415]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
  • UP000008299 <p>A UniProt <a href="http://www.uniprot.org/manual/proteomes_manual">proteome</a> can consist of several components. <br></br>The component name refers to the genomic component encoding a set of proteins.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Genome

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Capsid protein :
Spike glycoprotein E2 :
6K protein :
Spike glycoprotein E1 :

Topology

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/subcellular_location_section">'Subcellular location'</a> section describes the subcellular compartment where each non-membrane region of a membrane-spanning protein is found.<p><a href='/help/topo_dom' target='_top'>More...</a></p>Topological domaini276 – 701ExtracellularSequence analysisAdd BLAST426
<p>This subsection of the <a href="http://www.uniprot.org/help/subcellular_location_section">'Subcellular location'</a> section describes the extent of a membrane-spanning region of the protein. It denotes the presence of both alpha-helical transmembrane regions and the membrane spanning regions of beta-barrel transmembrane proteins.<p><a href='/help/transmem' target='_top'>More...</a></p>Transmembranei702 – 722HelicalSequence analysisAdd BLAST21
Topological domaini723 – 757CytoplasmicSequence analysisAdd BLAST35
Topological domaini758 – 772ExtracellularSequence analysisAdd BLAST15
Transmembranei773 – 793HelicalSequence analysisAdd BLAST21
Topological domaini794CytoplasmicSequence analysis1
Transmembranei795 – 815HelicalSequence analysisAdd BLAST21
Topological domaini816 – 1225ExtracellularSequence analysisAdd BLAST410
Transmembranei1226 – 1246HelicalSequence analysisAdd BLAST21
Topological domaini1247 – 1255CytoplasmicSequence analysis9

GO - Cellular componenti

Keywords - Cellular componenti

Capsid protein, Host cell membrane, Host cytoplasm, Host membrane, Membrane, T=4 icosahedral capsid protein, Viral envelope protein, Virion

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00000412511 – 275Capsid proteinAdd BLAST275
ChainiPRO_0000234318276 – 757Precursor of protein E3/E2Add BLAST482
ChainiPRO_0000041252276 – 334Assembly protein E3Add BLAST59
ChainiPRO_0000041253335 – 757Spike glycoprotein E2Add BLAST423
ChainiPRO_0000041254758 – 8136K proteinAdd BLAST56
ChainiPRO_0000041255814 – 1255Spike glycoprotein E1Add BLAST442

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section specifies the position and type of each covalently attached glycan group (mono-, di-, or polysaccharide).<p><a href='/help/carbohyd' target='_top'>More...</a></p>Glycosylationi47N-linked (GlcNAc...) asparagine; by hostSequence analysis1
Glycosylationi286N-linked (GlcNAc...) asparagine; by hostSequence analysis1
Glycosylationi652N-linked (GlcNAc...) asparagine; by hostSequence analysis1
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section specifies the position(s) and the type of covalently attached lipid group(s).<p><a href='/help/lipid' target='_top'>More...</a></p>Lipidationi730S-palmitoyl cysteine; by hostBy similarity1
Lipidationi750S-palmitoyl cysteine; by hostBy similarity1
Lipidationi751S-palmitoyl cysteine; by hostBy similarity1
<p>This subsection of the PTM / Processing":/help/ptm_processing_section section describes the positions of cysteine residues participating in disulfide bonds.<p><a href='/help/disulfid' target='_top'>More...</a></p>Disulfide bondi862 ↔ 927By similarity
Disulfide bondi875 ↔ 907By similarity
Disulfide bondi876 ↔ 909By similarity
Disulfide bondi881 ↔ 891By similarity
Glycosylationi947N-linked (GlcNAc...) asparagine; by hostSequence analysis1
Disulfide bondi1072 ↔ 1084By similarity
Disulfide bondi1114 ↔ 1189By similarity
Disulfide bondi1119 ↔ 1193By similarity
Disulfide bondi1141 ↔ 1183By similarity

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

Structural polyprotein: Specific enzymatic cleavages in vivo yield mature proteins. Capsid protein is auto-cleaved during polyprotein translation, unmasking a signal peptide at the N-terminus of the precursor of E3/E2. The remaining polyprotein is then targeted to the host endoplasmic reticulum, where host signal peptidase cleaves it into pE2, 6K and E1 proteins. pE2 is further processed to mature E3 and E2 by host furin in trans-Golgi vesicle.By similarity
Spike glycoprotein E2: Palmitoylated via thioester bonds. These palmitoylations may induce disruption of the C-terminus transmembrane. This would result in the reorientation of E2 C-terminus from lumenal to cytoplasmic side.By similarity
Spike glycoprotein E1: N-glycosylated.By similarity
Spike glycoprotein E2: N-glycosylated.By similarity
Assembly protein E3: N-glycosylated.By similarity
6K protein: Palmitoylated via thioester bonds.By similarity

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection describes interesting single amino acid sites on the sequence that are not defined in any other subsection. This subsection can be displayed in different sections (‘Function’, ‘PTM / Processing’, ‘Pathology and Biotech’) according to its content.<p><a href='/help/site' target='_top'>More...</a></p>Sitei275 – 276Cleavage; by autolysisBy similarity2
Sitei757 – 758Cleavage; by host signal peptidaseBy similarity2
Sitei813 – 814Cleavage; by host signal peptidaseBy similarity2

Keywords - PTMi

Cleavage on pair of basic residues, Disulfide bond, Glycoprotein, Lipoprotein, Palmitate

Proteomic databases

PRoteomics IDEntifications database

More...
PRIDEi
P36329

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

Precursor of protein E3/E2: The precursor of protein E3/E2 and E1 form a heterodimer shortly after synthesis. Spike glycoprotein E1: The precursor of protein E3/E2 and E1 form a heterodimer shortly after synthesis. Spike glycoprotein E1: Processing of the precursor of protein E3/E2 into E2 and E3 results in a heterodimer of the spike glycoproteins E2 and E1. Spike glycoprotein E2: Processing of the precursor of protein E3/E2 into E2 and E3 results in a heterodimer of the spike glycoproteins E2 and E1. Spike glycoprotein E1: Spike at virion surface are constituted of three E2-E1 heterodimers. Spike glycoprotein E2: Spike at virion surface are constituted of three E2-E1 heterodimers. Spike glycoprotein E1: After target cell attachment and endocytosis, E1 change conformation to form homotrimers. 6K protein: Interacts with spike glycoprotein E1. 6K protein: Interacts with spike glycoprotein E2. Spike glycoprotein E1: Interacts with 6K protein. Spike glycoprotein E2: Interacts with 6K protein.By similarity

<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

3D structure databases

Protein Model Portal of the PSI-Nature Structural Biology Knowledgebase

More...
ProteinModelPortali
P36329

SWISS-MODEL Repository - a database of annotated 3D protein structure models

More...
SMRi
P36329

Database of comparative protein structure models

More...
ModBasei
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Domains and Repeats

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/family_and_domains_section">Family and Domains</a> section describes the position and type of a domain, which is defined as a specific combination of secondary structures organized into a characteristic three-dimensional structure or fold.<p><a href='/help/domain' target='_top'>More...</a></p>Domaini126 – 275Peptidase S3PROSITE-ProRule annotationAdd BLAST150

Region

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni91 – 113Ribosome-bindingBy similarityAdd BLAST23
Regioni276 – 287Functions as an uncleaved signal peptide for the precursor of protein E3/E2By similarityAdd BLAST12
Regioni897 – 914E1 fusion peptide loopBy similarityAdd BLAST18

<p>This subsection of the ‘Family and domains’ section provides general information on the biological role of a domain. The term ‘domain’ is intended here in its wide acceptation, it may be a structural domain, a transmembrane region or a functional domain. Several domains are described in this subsection.<p><a href='/help/domain_cc' target='_top'>More...</a></p>Domaini

Structural polyprotein: As soon as the capsid protein has been autocleaved, an internal uncleaved signal peptide directs the remaining polyprotein to the endoplasmic reticulum.By similarity

Keywords - Domaini

Transmembrane, Transmembrane helix

Phylogenomic databases

Database of Orthologous Groups

More...
OrthoDBi
VOG0900008L

Family and domain databases

Gene3D Structural and Functional Annotation of Protein Families

More...
Gene3Di
2.60.40.350, 1 hit
2.60.98.10, 3 hits

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR002548 Alpha_E1_glycop
IPR000936 Alpha_E2_glycop
IPR002533 Alpha_E3_glycop
IPR000336 Flavivir/Alphavir_Ig-like_sf
IPR036253 Glycoprot_cen/dimer_sf
IPR038055 Glycoprot_E_dimer_dom
IPR014756 Ig_E-set
IPR009003 Peptidase_S1_PA
IPR000930 Peptidase_S3

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF01589 Alpha_E1_glycop, 1 hit
PF00943 Alpha_E2_glycop, 1 hit
PF01563 Alpha_E3_glycop, 1 hit
PF00944 Peptidase_S3, 1 hit

Protein Motif fingerprint database; a protein domain database

More...
PRINTSi
PR00798 TOGAVIRIN

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF50494 SSF50494, 1 hit
SSF56983 SSF56983, 1 hit
SSF81296 SSF81296, 1 hit

PROSITE; a protein domain and family database

More...
PROSITEi
View protein in PROSITE
PS51690 ALPHAVIRUS_CP, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>.<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is in its mature form or if it represents the precursor.<p><a href='/help/sequence_processing' target='_top'>More...</a></p>Sequence processingi: The displayed sequence is further processed into a mature form.

P36329-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MFPFQPMYPM QPMPYRNPFA APRRPWFPRT DPFLAMQVQE LTRSMANLTF
60 70 80 90 100
KQRREAPPEG PPAKKPKREA PQKQKGGGQG KKKKNQGKKK AKTGPPNPKA
110 120 130 140 150
QNGNKKKTNK KPGKRQRMVM KLESDKTFPI MLEGKINGYA CVVGGKLFRP
160 170 180 190 200
MHVEGKIDND VLAALKTKKA SKYDLEYADV PQNMRADTFK YTHEKPQGYY
210 220 230 240 250
SWHHGAVQYE NGRFTVPKGV GAKGDSGRPI LDNQGRVVAI VLGGVNEGSR
260 270 280 290 300
TALSVVMWNE KGVTVKYTPE NCEQWSLVTT MCLLANVTFP CAQPPICYDR
310 320 330 340 350
KPAETLAMLS VNVDNPGYDE LLEAAVKCPG RKRRSTEELF KEYKLTRPYM
360 370 380 390 400
ARCIRCAVGS CHSPIAIEAV KSDGHDGYVR LQTSSQYGLD SSGNLKGRTM
410 420 430 440 450
RYDMHGTIEE IPLHQVSLHT SRPCHIVDGH GYFLLARCPA GDSITMEFKK
460 470 480 490 500
DAVTHSCSVP YEVKFNPVGR ELYTHPPEHG AEQACQVYAH DAQNRGAYVE
510 520 530 540 550
MHLPGSEVDS SLVSLSGSSV TVTPPAGTSA LVECECGGTK ISETINTAKQ
560 570 580 590 600
FSQCTKKEQC RAYRLQNDKW VYNSDKLPKA AGATLKGKLH VPFLLADGKC
610 620 630 640 650
TVPLAPEPMI TFGFRSVSLK LHPKNPTYLT TRQLADEPHY THELISEPVV
660 670 680 690 700
RNFSVTEKGW EFVWGNHPPK RFWAQETAPG NPHGLPHEVI THYYHRYPMS
710 720 730 740 750
TILGLSICAA IVTVSIAAST WLLCKSRVSC LTPYRLTPNA RMPLCLAVLC
760 770 780 790 800
CARTARAETT WESLDHLWNN NQQMFWIQLL IPLAALIVVT RLLRCVCCVV
810 820 830 840 850
PFLVVAGAAG AGAYEHATTM PSQAGIPYNT IVNRAGYAPL PISITPTKIK
860 870 880 890 900
LIPTVNLEYV TCHYKTGMDS PAIKCCGSQE CTPTYRPDEQ CKVFTGVYPF
910 920 930 940 950
MWGGAYCFCD TENTQVSKAY VMKSDDCLAD HAEAYKAHTA SVQAFLNITV
960 970 980 990 1000
GEHSIVTTVY VNGETPVNFN GVKLTAGPLS TAWTPFDRKI VQYAGEIYNY
1010 1020 1030 1040 1050
DFPEYGAGQP GAFGDIQSRT VSSSDLYANT NLVLQRPKAG AIHVPYTQAP
1060 1070 1080 1090 1100
SGFEQWKKDK APSLKFTAPF GCEIYTNPIR AENCAVGSIP LAFDIPDALF
1110 1120 1130 1140 1150
TRVSETPTLS AAECTLNECV YSSDFGGIAT VKYSASKSGK CAVHVPSGTA
1160 1170 1180 1190 1200
TLKEAAIELA EQGSATIHFS TANIHPEFRL QICTSYVTCK GDCHPPKDHI
1210 1220 1230 1240 1250
VTHPQYHAQT FTAAVSKTAW TWLTSLLGGS AVIIIIGLVL ATIVAMYVLT

NQKHN
Length:1,255
Mass (Da):138,298
Last modified:June 1, 1994 - v1
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:i7D730E17CAECA310
GO

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
L00930 Genomic RNA Translation: AAC19325.1

Protein sequence database of the Protein Information Resource

More...
PIRi
D44213

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
L00930 Genomic RNA Translation: AAC19325.1
PIRiD44213

3D structure databases

ProteinModelPortaliP36329
SMRiP36329
ModBaseiSearch...
MobiDBiSearch...

Proteomic databases

PRIDEiP36329

Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Phylogenomic databases

OrthoDBiVOG0900008L

Family and domain databases

Gene3Di2.60.40.350, 1 hit
2.60.98.10, 3 hits
InterProiView protein in InterPro
IPR002548 Alpha_E1_glycop
IPR000936 Alpha_E2_glycop
IPR002533 Alpha_E3_glycop
IPR000336 Flavivir/Alphavir_Ig-like_sf
IPR036253 Glycoprot_cen/dimer_sf
IPR038055 Glycoprot_E_dimer_dom
IPR014756 Ig_E-set
IPR009003 Peptidase_S1_PA
IPR000930 Peptidase_S3
PfamiView protein in Pfam
PF01589 Alpha_E1_glycop, 1 hit
PF00943 Alpha_E2_glycop, 1 hit
PF01563 Alpha_E3_glycop, 1 hit
PF00944 Peptidase_S3, 1 hit
PRINTSiPR00798 TOGAVIRIN
SUPFAMiSSF50494 SSF50494, 1 hit
SSF56983 SSF56983, 1 hit
SSF81296 SSF81296, 1 hit
PROSITEiView protein in PROSITE
PS51690 ALPHAVIRUS_CP, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiPOLS_EEVV3
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: P36329
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: June 1, 1994
Last sequence update: June 1, 1994
Last modified: December 5, 2018
This is version 115 of the entry and version 1 of the sequence. See complete history.
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programViral Protein Annotation Program

<p>This section contains any relevant information that doesn’t fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

Complete proteome
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again