Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 105 (02 Jun 2021)
Sequence version 1 (01 Feb 1994)
Previous versions | rss
Add a publicationFeedback
Protein

Histidine-rich glycoprotein

Gene

HRG

Organism
Bos taurus (Bovine)
Status
Reviewed-Annotation score:

Annotation score:5 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the 'correct annotation' for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at protein leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the 'protein existence' evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Plasma glycoprotein that binds a number of ligands such as heme, heparin, heparan sulfate, thrombospondin, plasminogen, and divalent metal ions. Inhibits rosette formation. Acts as an adapter protein and implicated in regulating many processes such as immune complex and pathogen clearance, cell adhesion, angiogenesis, coagulation and fibrinolysis. Mediates clearance of necrotic cells through enhancing the phagocytosis of necrotic cells in a heparan sulfate-dependent pathway. This process can be regulated by the presence of certain HRG ligands such as heparin and zinc ions. Binds to IgG subclasses of immunoglobins containing kappa and lambda light chains with different affinities regulating their clearance and inhibiting the formation of insoluble immune complexes. Tethers plasminogen to the cell surface. Binds T-cells and alters the cell morphology. Modulates angiogenesis by blocking the CD6-mediated antiangiongenic effect of thrombospondins, THBS1 and THBS2 (By similarity).

By similarity

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionHeparin-binding
Biological processBlood coagulation, Fibrinolysis, Hemostasis
LigandCopper, Zinc

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Histidine-rich glycoprotein
Alternative name(s):
Histidine-proline-rich glycoprotein
Short name:
HPRG
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: 'Name', 'Synonyms', 'Ordered locus names' and 'ORF names'.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:HRG
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiBos taurus (Bovine)
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the 'taxonomic identifier' or 'taxid'.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri9913 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaLaurasiatheriaArtiodactylaRuminantiaPecoraBovidaeBovinaeBos
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
  • UP000009136 <p>A UniProt <a href="http://www.uniprot.org/manual/proteomes_manual">proteome</a> can consist of several components.<br></br>The component name refers to the genomic component encoding a set of proteins.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Unplaced

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Keywords - Cellular componenti

Secreted

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the 'PTM / Processing' section describes the extent of a polypeptide chain in the mature protein following processing or proteolytic cleavage.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00002071641 – 396Histidine-rich glycoproteinAdd BLAST396

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the PTM / Processing":/help/ptm_processing_section section describes the positions of cysteine residues participating in disulfide bonds.<p><a href='/help/disulfid' target='_top'>More...</a></p>Disulfide bondi7 ↔ 3751 Publication
Disulfide bondi56 ↔ 671 Publication
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section specifies the position and type of each covalently attached glycan group (mono-, di-, or polysaccharide).<p><a href='/help/carbohyd' target='_top'>More...</a></p>Glycosylationi70N-linked (GlcNAc...) asparagine; partial1 Publication1
Disulfide bondi77 ↔ 921 Publication
Glycosylationi91N-linked (GlcNAc...) asparagine1 Publication1
Glycosylationi122N-linked (GlcNAc...) asparagine1 Publication1
Disulfide bondi123 ↔ 2971 Publication
Disulfide bondi137 ↔ 1601 Publication
Disulfide bondi212 ↔ 2421 Publication
Glycosylationi220N-linked (GlcNAc...) asparagine1 Publication1
<p>This subsection of the 'PTM / Processing' section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei309PhosphoserineBy similarity1

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

N-glycosylated.1 Publication
Proteolytic cleavage produces several HRG fragments which are mostly disulfide-linked and, therefore, not released. On platelet activation, may release a 33 kDa antiangiogenic peptide which encompasses the HRR (By similarity).By similarity

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection describes interesting single amino acid sites on the sequence that are not defined in any other subsection. This subsection can be displayed in different sections ('Function', 'PTM / Processing', 'Pathology and Biotech') according to its content.<p><a href='/help/site' target='_top'>More...</a></p>Sitei230 – 231Cleavage2

Keywords - PTMi

Disulfide bond, Glycoprotein, Phosphoprotein

Proteomic databases

PeptideAtlas

More...
PeptideAtlasi
P33433

PRoteomics IDEntifications database

More...
PRIDEi
P33433

PTM databases

iPTMnet integrated resource for PTMs in systems biology context

More...
iPTMneti
P33433

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

Interacts (via the HRR domain) with TPM1; the interaction appears to contribute to the antiangiogenic properties of the HRR domain.

Interacts with THBS1 (via the TSP type I repeats); the interaction blocks the antiangiogenic effect of THBS1 with CD36 (By similarity).

Interacts with PLG (via its Kringle domains); the interaction tethers PLG to the cell surface and enhances its activation.

Interacts with THBS2; the interaction blocks the antiangiogenic effect of THBS2 with CD36.

Interacts with HPSE; the interaction is enhanced at acidic pH, partially inhibits binding of HPSE to cell surface receptors and modulates its enzymatic activity.

Interacts (via the HRR domain) with TMP1; the interaction partially mediates the antiangiogenic properties of HRG.

Interacts with kappa and lambda light chains of IgG molecules.

Interacts with ATP5F1A; the interaction occurs on the surface of T-cells and alters their cell morphology in concert with CONA. Binds IgG molecules containing kappa and lambda light chains and inhibits the formation of insoluble immunoglobulin complexes.

Interacts with F12; the interaction, which is enhanced in the presence of zinc ions and inhibited by heparin-binding to HRG, inhibits factor XII autoactivation and contact-initiated coagulation (By similarity).

By similarity

GO - Molecular functioni

Protein-protein interaction databases

STRING: functional protein association networks

More...
STRINGi
9913.ENSBTAP00000001667

<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

3D structure databases

SWISS-MODEL Repository - a database of annotated 3D protein structure models

More...
SMRi
P33433

Database of comparative protein structure models

More...
ModBasei
Search...

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Domains and Repeats

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/family_and_domains_section">Family and Domains</a> section describes the position and type of a domain, which is defined as a specific combination of secondary structures organized into a characteristic three-dimensional structure or fold.<p><a href='/help/domain' target='_top'>More...</a></p>Domaini1 – 102Cystatin 1Add BLAST102
Domaini103 – 169Cystatin 2Add BLAST67

Region

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the 'Family and Domains' section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni176 – 322DisorderedSequence analysisAdd BLAST147

Compositional bias

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the 'Family and Domains' section describes the position of regions of compositional bias within the protein and the particular type of amino acids that are over-represented within those regions.<p><a href='/help/compbias' target='_top'>More...</a></p>Compositional biasi229 – 244Pro residuesSequence analysisAdd BLAST16
Compositional biasi251 – 267Basic and acidic residuesSequence analysisAdd BLAST17
Compositional biasi268 – 282Basic residuesSequence analysisAdd BLAST15
Compositional biasi283 – 318Basic and acidic residuesSequence analysisAdd BLAST36

<p>This subsection of the 'Family and domains' section provides general information on the biological role of a domain. The term 'domain' is intended here in its wide acceptation, it may be a structural domain, a transmembrane region or a functional domain. Several domains are described in this subsection.<p><a href='/help/domain_cc' target='_top'>More...</a></p>Domaini

The His-rich (HRR) region contains approximately 12 tandem internal repeats of the 5-residue G[H/P][H/P]PH consensus sequence. HRR binds heparan sulfate and possesses antiangiogenic, antibacterial and antifungal properties through binding Candida cells, and preferentially lysing the ergosterol-containing liposomes at low pH. The tandem repeats also bind divalent metal ions and heme (By similarity).By similarity
The cystatin domains can also bind heparan sulfate. Binding is enhanced in the presence of zinc ions (By similarity).By similarity

Keywords - Domaini

Repeat

Phylogenomic databases

evolutionary genealogy of genes: Non-supervised Orthologous Groups

More...
eggNOGi
ENOG502S50D, Eukaryota

InParanoid: Eukaryotic Ortholog Groups

More...
InParanoidi
P33433

Identification of Orthologs from Complete Genome Data

More...
OMAi
SCPGKFK

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Fragments.

P33433-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
AVNPTGCDAV EPVAVRALDL INKGRDGYLF QLLRVADAHL DKVESIAVYY
60 70 80 90 100
LVESDCPVLS RKHWDDCELN VTVIGQCKLA GPEDLSVNDF NCTTSSVSSA
110 120 130 140 150
LTNMRARGGE GTSYFLDFSV RNCSSHHFPR HHIFGFCRAD LFYDVEASDL
160 170 180 190 200
ETPKDIVTNC EVFHRRFSAV QHHLGRPFHS GEHEHSPAGR PPFKPSGSKD
210 220 230 240 250
HGHPHESYNF RCPPPLEHKN HSDSPPFQAR APLPFPPPGL RCPHPPFGTK
260 270 280 290 300
GNHRPPHDHS SDEHHPHGHH PHGHHPHGHH PHGHHPPDND FYDHGPCDPP
310 320 330 340 350
PHRPPPRHSK ERGPGKGHFR FHWRPTGYIH RLPSLKKGEV LPLPEANFPS
360 370 380 390
FSLPNHNNPL QPEIQAFPQS ASESCPGTFN IKFLHISKFF AYTLPK
Length:396
Mass (Da):44,471
Last modified:February 1, 1994 - v1
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:i128A8223499DE6FC
GO

Experimental Info

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the 'Sequence' section is used to indicate that two residues in a sequence are not consecutive and that there is an undetermined number of unsequenced residues between them.<p><a href='/help/non_cons' target='_top'>More...</a></p>Non-adjacent residuesi52 – 53Curated2
Non-adjacent residuesi71 – 72Curated2
Non-adjacent residuesi78 – 79Curated2
Non-adjacent residuesi103 – 104Curated2
Non-adjacent residuesi163 – 164Curated2
Non-adjacent residuesi263 – 264Curated2
Non-adjacent residuesi303 – 304Curated2

Natural variant

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the 'Sequence' section describes natural variant(s) of the protein sequence.<p><a href='/help/variant' target='_top'>More...</a></p>Natural varianti86S → R. 1
Natural varianti309S → Q. 1
Natural varianti322H → Y. 1

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

3D structure databases

SMRiP33433
ModBaseiSearch...

Protein-protein interaction databases

STRINGi9913.ENSBTAP00000001667

PTM databases

iPTMnetiP33433

Proteomic databases

PeptideAtlasiP33433
PRIDEiP33433

Phylogenomic databases

eggNOGiENOG502S50D, Eukaryota
InParanoidiP33433
OMAiSCPGKFK

Family and domain databases

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the 'Entry information' section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiHRG_BOVIN
<p>This subsection of the 'Entry information' section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called 'Primary (citable) accession number'.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: P33433
<p>This subsection of the 'Entry information' section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification ('Last modified'). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: February 1, 1994
Last sequence update: February 1, 1994
Last modified: June 2, 2021
This is version 105 of the entry and version 1 of the sequence. See complete history.
<p>This subsection of the 'Entry information' section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

<p>This section contains any relevant information that doesn't fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

Direct protein sequencing, Reference proteome
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again