Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 102 (26 Feb 2020)
Sequence version 1 (01 Oct 1993)
Previous versions | rss
Help videoAdd a publicationFeedback
Protein

DNA damage-binding protein 1

Gene

DDB1

Organism
Chlorocebus aethiops (Green monkey) (Cercopithecus aethiops)
Status
Reviewed-Annotation score:

Annotation score:4 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the 'correct annotation' for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at protein leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the 'protein existence' evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Required for DNA repair. Binds to DDB2 to form the UV-damaged DNA-binding protein complex (the UV-DDB complex). The UV-DDB complex may recognize UV-induced DNA damage and recruit proteins of the nucleotide excision repair pathway (the NER pathway) to initiate DNA repair. The UV-DDB complex preferentially binds to cyclobutane pyrimidine dimers (CPD), 6-4 photoproducts (6-4 PP), apurinic sites and short mismatches. Also appears to function as a component of numerous distinct DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins. The functional specificity of the DCX E3 ubiquitin-protein ligase complex is determined by the variable substrate recognition component recruited by DDB1. DCX(DDB2) (also known as DDB1-CUL4-ROC1, CUL4-DDB-ROC1 and CUL4-DDB-RBX1) may ubiquitinate histone H2A, histone H3 and histone H4 at sites of UV-induced DNA damage. The ubiquitination of histones may facilitate their removal from the nucleosome and promote subsequent DNA repair. DCX(DDB2) also ubiquitinates XPC, which may enhance DNA-binding by XPC and promote NER. DCX(DTL) plays a role in PCNA-dependent polyubiquitination of CDT1 and MDM2-dependent ubiquitination of TP53 in response to radiation-induced DNA damage and during DNA replication. DCX(ERCC8) (the CSA complex) plays a role in transcription-coupled repair (TCR). The DDB1-CUL4A-DTL E3 ligase complex regulates the circadian clock function by mediating the ubiquitination and degradation of CRY1 (By similarity). DDB1-mediated CRY1 degradation promotes FOXO1 protein stability and FOXO1-mediated gluconeogenesis in the liver (By similarity).By similarity

<p>This subsection of the <a href="http://www.uniprot.org/help/function%5Fsection">'Function'</a> section describes the metabolic pathway(s) associated with a protein.<p><a href='/help/pathway' target='_top'>More...</a></p>Pathwayi: protein ubiquitination

This protein is involved in the pathway protein ubiquitination, which is part of Protein modification.
View all proteins of this organism that are known to be involved in the pathway protein ubiquitination and in Protein modification.

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionDNA-binding
Biological processDNA damage, DNA repair, Ubl conjugation pathway

Enzyme and pathway databases

UniPathway: a resource for the exploration and annotation of metabolic pathways

More...
UniPathwayi
UPA00143

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
DNA damage-binding protein 1
Alternative name(s):
DDB p127 subunit
DDBa
Damage-specific DNA-binding protein 1
UV-damaged DNA-binding protein 1
Short name:
UV-DDB 1
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: 'Name', 'Synonyms', 'Ordered locus names' and 'ORF names'.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:DDB1
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiChlorocebus aethiops (Green monkey) (Cercopithecus aethiops)
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the 'taxonomic identifier' or 'taxid'.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri9534 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresPrimatesHaplorrhiniCatarrhiniCercopithecidaeCercopithecinaeChlorocebus

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte & Seán O’Donoghue; Source: COMPARTMENTS

Keywords - Cellular componenti

Cytoplasm, Nucleus

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm%5Fprocessing%5Fsection">PTM / Processing</a> section indicates that the initiator methionine is cleaved from the mature protein.<p><a href='/help/init_met' target='_top'>More...</a></p>Initiator methionineiRemovedBy similarity
<p>This subsection of the 'PTM / Processing' section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00000798392 – 1140DNA damage-binding protein 1Add BLAST1139

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the 'PTM / Processing' section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei2N-acetylserineBy similarity1
Modified residuei1067N6-acetyllysineBy similarity1
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm%5Fprocessing%5Fsection">PTM / Processing</a> section describes <strong>covalent linkages</strong> of various types formed <strong>between two proteins (interchain cross-links)</strong> or <strong>between two parts of the same protein (intrachain cross-links)</strong>, except the disulfide bonds that are annotated in the <a href="http://www.uniprot.org/manual/disulfid">'Disulfide bond'</a> subsection.<p><a href='/help/crosslnk' target='_top'>More...</a></p>Cross-linki1121Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in SUMO2)By similarity
Modified residuei1125PhosphothreonineBy similarity1

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm%5Fprocessing%5Fsection">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

Phosphorylated by ABL1.By similarity
Ubiquitinated by CUL4A. Subsequently degraded by ubiquitin-dependent proteolysis.By similarity
Acetylated, promoting interaction with CUL4 (CUL4A or CUL4B) and subsequent formation of DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complexes. Deacetylation by SIRT7 impairs the interaction with CUL4 (CUL4A or CUL4B) and formation of DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complexes.By similarity

Keywords - PTMi

Acetylation, Isopeptide bond, Phosphoprotein, Ubl conjugation

Proteomic databases

PRoteomics IDEntifications database

More...
PRIDEi
P33194

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction%5Fsection">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function%5Fsection">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

Component of the UV-DDB complex which includes DDB1 and DDB2. The UV-DDB complex interacts with monoubiquitinated histone H2A and binds to XPC via the DDB2 subunit.

Component of numerous DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complexes which consist of a core of DDB1, CUL4A or CUL4B and RBX1. DDB1 may recruit specific substrate targeting subunits to the DCX complex. These substrate targeting subunits are generally known as DCAF (DDB1- and CUL4-associated factor) or CDW (CUL4-DDB1-associated WD40-repeat) proteins.

Interacts with AMBRA1, ATG16L1, BTRC, DCAF17, DCAF16, DCAF15, DDA1, DET1, DTL, ERCC8, FBXW5, FBXW8, GRWD1, DCAF6, KATNB1, NLE1, NUP43, PAFAH1B1, PHIP, PWP1, RBBP4, RBBP5, RBBP7, COP1, SNRNP40, DCAF1, WDR5, WDR5B, WDR12, DCAF4, DCAF5, DCAF11, WDR26, DCAF10, WDR39, DCAF12, WDR42, DCAF8, WDR53, WDR59, WDR61, DCAF7, WSB1, WSB2, LRWD1 and WDTC1. DCX complexes may associate with the COP9 signalosome, and this inhibits the E3 ubiquitin-protein ligase activity of the complex.

Interacts with NF2, TSC1 and TSC2.

Interacts with AGO1 and AGO2. Associates with the E3 ligase complex containing DYRK2, EDD/UBR5, DDB1 and DCAF1 proteins (EDVP complex).

Interacts directly with DYRK2 (By similarity).

By similarity

Protein-protein interaction databases

Protein interaction database and analysis system

More...
IntActi
P33194, 2 interactors

Molecular INTeraction database

More...
MINTi
P33194

<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

3D structure databases

SWISS-MODEL Repository - a database of annotated 3D protein structure models

More...
SMRi
P33194

Database of comparative protein structure models

More...
ModBasei
Search...

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Region

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the 'Family and Domains' section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni2 – 768Interaction with CDT1By similarityAdd BLAST767
Regioni13 – 356WD repeat beta-propeller ABy similarityAdd BLAST344
Regioni391 – 708WD repeat beta-propeller B; Interaction with CUL4ABy similarityAdd BLAST318
Regioni709 – 1043WD repeat beta-propeller CBy similarityAdd BLAST335
Regioni771 – 1140Interaction with CDT1 and CUL4ABy similarityAdd BLAST370

<p>This subsection of the 'Family and domains' section provides general information on the biological role of a domain. The term 'domain' is intended here in its wide acceptation, it may be a structural domain, a transmembrane region or a functional domain. Several domains are described in this subsection.<p><a href='/help/domain_cc' target='_top'>More...</a></p>Domaini

The core of the protein consists of three WD40 beta-propeller domains.By similarity

<p>This subsection of the 'Family and domains' section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Belongs to the DDB1 family.Curated

Keywords - Domaini

Repeat

Family and domain databases

Gene3D Structural and Functional Annotation of Protein Families

More...
Gene3Di
2.130.10.10, 3 hits

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR004871 Cleavage/polyA-sp_fac_asu_C
IPR031297 DDB1
IPR015943 WD40/YVTN_repeat-like_dom_sf
IPR036322 WD40_repeat_dom_sf

The PANTHER Classification System

More...
PANTHERi
PTHR10644:SF3 PTHR10644:SF3, 1 hit

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF03178 CPSF_A, 1 hit

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF50978 SSF50978, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence%5Flength">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences%5Fsection">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical%5Fand%5Fisoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences%5Fsection">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical%5Fand%5Fisoforms">canonical sequence</a> displayed by default in the entry is in its mature form or if it represents the precursor.<p><a href='/help/sequence_processing' target='_top'>More...</a></p>Sequence processingi: The displayed sequence is further processed into a mature form.

P33194-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MSYNYVVTAQ KPTAVNGCVT AHFTSAEDLN LLIAKNTRLE IYVVTAEGLR
60 70 80 90 100
PVKEVGMYGK IAVMELFRPK GESKDLLFIL TAKYNACILE YKQSGESIDI
110 120 130 140 150
ITRAHGNVQD RIGRPSETGI IGIIDPECRM IGLRLYDGLF KVIPLDRDNK
160 170 180 190 200
ELKAFNIRLE ELHVIDVKFL YGCQAPTICF VYQDPQGRHV KTYEVSLREK
210 220 230 240 250
EFNKGPWKQE NVEAEASMVI AVPEPFGGAI IIGQESITYH NGDKYLAIAP
260 270 280 290 300
PIIKQSTIVC HNRVDPNGSR YLLGDMEGRL FMLLLEKEEQ MDGTVTLKDL
310 320 330 340 350
RVELLGETSI AECLTYLDNG VVFVGSRLGD SQLVKLNVDS NEQGSYVVAM
360 370 380 390 400
ETFTNLGPIV DMCVVDLERQ GQGQLVTCSG AFKEGSLRII RNGIGIHEHA
410 420 430 440 450
SIDLPGIKGL WPLRSDPNRE TDDTLVLSFV GQTRVLMLNG EEVEETELMG
460 470 480 490 500
FVDDQQTFFC GNVAHQQLIQ ITSASVRLVS QEPKALVSEW KEPQAKNISV
510 520 530 540 550
ASCNSSQVVV AVGRALYYLQ IHPQELRQIS HTEMEHEVAC LDITPLGDSN
560 570 580 590 600
GLSPLCAIGL WTDISARILK LPSFELLHKE MLGGEIIPRS ILMTTFESSH
610 620 630 640 650
YLLCALGDGA LFYFGLNIET GLLSDRKKVT LGTQPTVLRT FRSLSTTNVF
660 670 680 690 700
ACSDRPTVIY SSNHKLVFSN VNLKEVNYMC PLNSDGYPDS LALANNSTLT
710 720 730 740 750
IGTIDEIQKL HIRTVPLYES PRKICYQEVS QCFGVLSSRI EVQDTSGGTT
760 770 780 790 800
ALRPSASTQA LSSSVSSSKL FSSSTAPHET SFGEEVEVHN LLIIDQHTFE
810 820 830 840 850
VLHAHQFLQN EYALSLVSCK LGKDPNTYFI VGTAMVYPEE AEPKQGRIVV
860 870 880 890 900
FQYSDGKLQT VAEKEVKGAV YSMVEFNGKL LASINSTVRL YEWTTEKELR
910 920 930 940 950
TECNHYNNIM ALYLKTKGDF ILVGDLMRSV LLLAYKPMEG NFEEIARDFN
960 970 980 990 1000
PNWMSAVEIL DDDNFLGAEN AFNLFVCQKD SAATTDEERQ HLQEVGLFHL
1010 1020 1030 1040 1050
GEFVNVFCHG SLVMQNLGET STPTQGSVLF GTVNGMIGLV TSLSESWYNL
1060 1070 1080 1090 1100
LLDMQNRLNK VIKSVGKIEH SFWRSFHTER KTEPATGFID GDLIESFLDI
1110 1120 1130 1140
SRPKMQEVVA NLQYDDGSGM KREATADDLI KVVEELTRIH
Length:1,140
Mass (Da):126,982
Last modified:October 1, 1993 - v1
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:iE1BE31F956714C33
GO

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
L20216 mRNA Translation: AAA03021.1

Protein sequence database of the Protein Information Resource

More...
PIRi
S38777

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
L20216 mRNA Translation: AAA03021.1
PIRiS38777

3D structure databases

SMRiP33194
ModBaseiSearch...

Protein-protein interaction databases

IntActiP33194, 2 interactors
MINTiP33194

Proteomic databases

PRIDEiP33194

Enzyme and pathway databases

UniPathwayiUPA00143

Family and domain databases

Gene3Di2.130.10.10, 3 hits
InterProiView protein in InterPro
IPR004871 Cleavage/polyA-sp_fac_asu_C
IPR031297 DDB1
IPR015943 WD40/YVTN_repeat-like_dom_sf
IPR036322 WD40_repeat_dom_sf
PANTHERiPTHR10644:SF3 PTHR10644:SF3, 1 hit
PfamiView protein in Pfam
PF03178 CPSF_A, 1 hit
SUPFAMiSSF50978 SSF50978, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the 'Entry information' section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiDDB1_CHLAE
<p>This subsection of the 'Entry information' section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called 'Primary (citable) accession number'.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: P33194
<p>This subsection of the 'Entry information' section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification ('Last modified'). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical%5Fand%5Fisoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: October 1, 1993
Last sequence update: October 1, 1993
Last modified: February 26, 2020
This is version 102 of the entry and version 1 of the sequence. See complete history.
<p>This subsection of the 'Entry information' section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

<p>This section contains any relevant information that doesn't fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

Direct protein sequencing

Documents

  1. PATHWAY comments
    Index of metabolic and biosynthesis pathways
  2. SIMILARITY comments
    Index of protein domains and families
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again