Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Protein

Genome polyprotein

Gene
N/A
Organism
Hepatitis C virus genotype 2a (isolate HC-J6) (HCV)
Status
Reviewed-Annotation score:

Annotation score:5 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at protein leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Core protein packages viral RNA to form a viral nucleocapsid, and promotes virion budding. Modulates viral translation initiation by interacting with HCV IRES and 40S ribosomal subunit. Also regulates many host cellular functions such as signaling pathways and apoptosis. Prevents the establishment of cellular antiviral state by blocking the interferon-alpha/beta (IFN-alpha/beta) and IFN-gamma signaling pathways and by inducing human STAT1 degradation. Thought to play a role in virus-mediated cell transformation leading to hepatocellular carcinomas. Interacts with, and activates STAT3 leading to cellular transformation. May repress the promoter of p53, and sequester CREB3 and SP110 isoform 3/Sp110b in the cytoplasm. Also represses cell cycle negative regulating factor CDKN1A, thereby interrupting an important check point of normal cell cycle regulation. Targets transcription factors involved in the regulation of inflammatory responses and in the immune response: suppresses NK-kappaB activation, and activates AP-1. Could mediate apoptotic pathways through association with TNF-type receptors TNFRSF1A and LTBR, although its effect on death receptor-induced apoptosis remains controversial. Enhances TRAIL mediated apoptosis, suggesting that it might play a role in immune-mediated liver cell injury. Seric core protein is able to bind C1QR1 at the T-cell surface, resulting in down-regulation of T-lymphocytes proliferation. May transactivate human MYC, Rous sarcoma virus LTR, and SV40 promoters. May suppress the human FOS and HIV-1 LTR activity. Alters lipid metabolism by interacting with hepatocellular proteins involved in lipid accumulation and storage. Core protein induces up-regulation of FAS promoter activity, and thereby probably contributes to the increased triglyceride accumulation in hepatocytes (steatosis) (By similarity).By similarity
E1 and E2 glycoproteins form a heterodimer that is involved in virus attachment to the host cell, virion internalization through clathrin-dependent endocytosis and fusion with host membrane. E1/E2 heterodimer binds to human LDLR, CD81 and SCARB1/SR-BI receptors, but this binding is not sufficient for infection, some additional liver specific cofactors may be needed. The fusion function may possibly be carried by E1. E2 inhibits human EIF2AK2/PKR activation, preventing the establishment of an antiviral state. E2 is a viral ligand for CD209/DC-SIGN and CLEC4M/DC-SIGNR, which are respectively found on dendritic cells (DCs), and on liver sinusoidal endothelial cells and macrophage-like cells of lymph node sinuses. These interactions allow capture of circulating HCV particles by these cells and subsequent transmission to permissive cells. DCs act as sentinels in various tissues where they entrap pathogens and convey them to local lymphoid tissue or lymph node for establishment of immunity. Capture of circulating HCV particles by these SIGN+ cells may facilitate virus infection of proximal hepatocytes and lymphocyte subpopulations and may be essential for the establishment of persistent infection (By similarity).By similarity
P7 seems to be a heptameric ion channel protein (viroporin) and is inhibited by the antiviral drug amantadine. Also inhibited by long-alkyl-chain iminosugar derivatives. Essential for infectivity (By similarity).By similarity
Protease NS2-3 is a cysteine protease responsible for the autocatalytic cleavage of NS2-NS3. Seems to undergo self-inactivation following maturation (By similarity).By similarity
NS3 displays three enzymatic activities: serine protease, NTPase and RNA helicase. NS3 serine protease, in association with NS4A, is responsible for the cleavages of NS3-NS4A, NS4A-NS4B, NS4B-NS5A and NS5A-NS5B. NS3 RNA helicase binds to RNA and unwinds dsRNA in the 3' to 5' direction, and likely RNA stable secondary structure in the template strand. Cleaves the host antiviral protein MAVS (By similarity). NS3/NS4A complex also prevents phosphorylation of human IRF3, thus preventing the establishment of dsRNA induced antiviral state.By similarity
NS4B induces a specific membrane alteration that serves as a scaffold for the virus replication complex. This membrane alteration gives rise to the so-called ER-derived membranous web that contains the replication complex (By similarity).By similarity
NS5A is a component of the replication complex involved in RNA-binding. Its interaction with Human VAPB may target the viral replication complex to vesicles. Down-regulates viral IRES translation initiation. Mediates interferon resistance, presumably by interacting with and inhibiting human EIF2AK2/PKR. Seems to inhibit apoptosis by interacting with BIN1 and FKBP8. The hyperphosphorylated form of NS5A is an inhibitor of viral replication (By similarity).By similarity
NS5B is an RNA-dependent RNA polymerase that plays an essential role in the virus replication.By similarity

Miscellaneous

Cell culture adaptation of the virus leads to mutations in NS5A, reducing its inhibitory effect on replication.By similarity
Core protein exerts viral interference on hepatitis B virus when HCV and HBV coinfect the same cell, by suppressing HBV gene expression, RNA encapsidation and budding.By similarity

Caution

The core gene probably also codes for alternative reading frame proteins (ARFPs). Many functions depicted for the core protein might belong to the ARFPs.Curated

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes the catalytic activity of an enzyme, i.e. a chemical reaction that the enzyme catalyzes.<p><a href='/help/catalytic_activity' target='_top'>More...</a></p>Catalytic activityi

  • Hydrolysis of four peptide bonds in the viral precursor polyprotein, commonly with Asp or Glu in the P6 position, Cys or Thr in P1 and Ser or Ala in P1'. EC:3.4.21.98

<p>This subsection of the ‘Function’ section provides information relevant to cofactors. A cofactor is any non-protein substance required for a protein to be catalytically active. Some cofactors are inorganic, such as the metal atoms zinc, iron, and copper in various oxidation states. Others, such as most vitamins, are organic.<p><a href='/help/cofactor' target='_top'>More...</a></p>Cofactori

Protein has several cofactor binding sites:
  • Zn2+By similarityNote: Binds 1 zinc ion per NS3 protease domain.By similarity
  • Zn2+By similarityNote: Binds 1 zinc ion per NS5A N-terminal domain.By similarity

<p>This subsection of the ‘Function’ section describes regulatory mechanisms for enzymes, transporters or microbial transcription factors, and reports the components which regulate (by activation or inhibition) the reaction.<p><a href='/help/activity_regulation' target='_top'>More...</a></p>Activity regulationi

Activity of auto-protease NS2-3 is dependent on zinc ions and completely inhibited by EDTA. Serine protease NS3 is also activated by zinc ions (By similarity).By similarity

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Function’ section is used for enzymes and indicates the residues directly involved in catalysis.<p><a href='/help/act_site' target='_top'>More...</a></p>Active sitei956For protease NS2-3 activity; shared with dimeric partnerPROSITE-ProRule annotation1
Active sitei976For protease NS2-3 activity; shared with dimeric partnerPROSITE-ProRule annotation1
Active sitei997For protease NS2-3 activity; shared with dimeric partnerPROSITE-ProRule annotation1
Active sitei1087Charge relay system; for serine protease NS3 activityPROSITE-ProRule annotation1
Active sitei1111Charge relay system; for serine protease NS3 activityPROSITE-ProRule annotation1
<p>This subsection of the ‘Function’ section indicates at which position the protein binds a given metal ion. The nature of the metal is indicated in the ‘Description’ field.<p><a href='/help/metal' target='_top'>More...</a></p>Metal bindingi1127ZincPROSITE-ProRule annotation1
Metal bindingi1129ZincPROSITE-ProRule annotation1
Active sitei1169Charge relay system; for serine protease NS3 activityPROSITE-ProRule annotation1
Metal bindingi1175ZincPROSITE-ProRule annotation1
Metal bindingi1179ZincPROSITE-ProRule annotation1
Metal bindingi2015ZincBy similarity1
Metal bindingi2033ZincBy similarity1
Metal bindingi2035ZincBy similarity1
Metal bindingi2056ZincBy similarity1

Regions

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Function’ section describes a region in the protein which binds nucleotide phosphates. It always involves more than one amino acid and includes all residues involved in nucleotide-binding.<p><a href='/help/np_bind' target='_top'>More...</a></p>Nucleotide bindingi1234 – 1241ATPPROSITE-ProRule annotation8

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionHelicase, Hydrolase, Ion channel, Multifunctional enzyme, Nucleotidyltransferase, Protease, Ribonucleoprotein, RNA-binding, RNA-directed RNA polymerase, Serine protease, Thiol protease, Transferase, Viral ion channel, Viral nucleoprotein
Biological processActivation of host autophagy by virus, Apoptosis, Clathrin-mediated endocytosis of virus by host, Fusion of virus membrane with host endosomal membrane, Fusion of virus membrane with host membrane, G1/S host cell cycle checkpoint dysregulation by virus, Host-virus interaction, Inhibition of host innate immune response by virus, Inhibition of host interferon signaling pathway by virus, Inhibition of host MAVS by virus, Inhibition of host RLR pathway by virus, Inhibition of host STAT1 by virus, Inhibition of host TRAFs by virus, Interferon antiviral system evasion, Ion transport, Modulation of host cell cycle by virus, Transcription, Transcription regulation, Transport, Viral attachment to host cell, Viral immunoevasion, Viral penetration into host cytoplasm, Viral RNA replication, Virus endocytosis by host, Virus entry into host cell
LigandATP-binding, Metal-binding, Nucleotide-binding, Zinc

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Genome polyprotein
Cleaved into the following 11 chains:
Alternative name(s):
Capsid protein C
p21
Alternative name(s):
gp32
gp35
Alternative name(s):
NS1
gp68
gp70
Protease NS2-3 (EC:3.4.22.-)
Short name:
p23
Alternative name(s):
Hepacivirin
NS3P
p70
Alternative name(s):
p8
Alternative name(s):
p27
Alternative name(s):
p56
Alternative name(s):
NS5B
p68
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiHepatitis C virus genotype 2a (isolate HC-J6) (HCV)
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri11113 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiVirusesssRNA virusesssRNA positive-strand viruses, no DNA stageFlaviviridaeHepacivirus
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section only exists in viral entries and indicates the host(s) either as a specific organism or taxonomic group of organisms that are susceptible to be infected by a virus.<p><a href='/help/virus_host' target='_top'>More...</a></p>Virus hostiHomo sapiens (Human) [TaxID: 9606]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
  • UP000002682 <p>A UniProt <a href="http://www.uniprot.org/manual/proteomes_manual">proteome</a> can consist of several components. <br></br>The component name refers to the genomic component encoding a set of proteins.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Genome

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Core protein p21 :
Core protein p19 :
Envelope glycoprotein E1 :
  • Virion membrane Curated; Single-pass type I membrane protein Curated
  • Host endoplasmic reticulum membrane By similarity; Single-pass type I membrane protein By similarity
  • Note: The C-terminal transmembrane domain acts as a signal sequence and forms a hairpin structure before cleavage by host signal peptidase. After cleavage, the membrane sequence is retained at the C-terminus of the protein, serving as ER membrane anchor. A reorientation of the second hydrophobic stretch occurs after cleavage producing a single reoriented transmembrane domain. These events explain the final topology of the protein. ER retention of E1 is leaky and, in overexpression conditions, only a small fraction reaches the plasma membrane.
Envelope glycoprotein E2 :
  • Virion membrane Curated; Single-pass type I membrane protein Curated
  • Host endoplasmic reticulum membrane By similarity; Single-pass type I membrane protein By similarity
  • Note: The C-terminal transmembrane domain acts as a signal sequence and forms a hairpin structure before cleavage by host signal peptidase. After cleavage, the membrane sequence is retained at the C-terminus of the protein, serving as ER membrane anchor. A reorientation of the second hydrophobic stretch occurs after cleavage producing a single reoriented transmembrane domain. These events explain the final topology of the protein. ER retention of E2 is leaky and, in overexpression conditions, only a small fraction reaches the plasma membrane.
p7 :
Serine protease NS3 :
Non-structural protein 4A :
Non-structural protein 5A :
RNA-directed RNA polymerase :

Topology

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/subcellular_location_section">'Subcellular location'</a> section describes the subcellular compartment where each non-membrane region of a membrane-spanning protein is found.<p><a href='/help/topo_dom' target='_top'>More...</a></p>Topological domaini2 – 168CytoplasmicSequence analysisAdd BLAST167
<p>This subsection of the <a href="http://www.uniprot.org/help/subcellular_location_section">'Subcellular location'</a> section describes the extent of a membrane-spanning region of the protein. It denotes the presence of both alpha-helical transmembrane regions and the membrane spanning regions of beta-barrel transmembrane proteins.<p><a href='/help/transmem' target='_top'>More...</a></p>Transmembranei169 – 189HelicalSequence analysisAdd BLAST21
Topological domaini190 – 358LumenalSequence analysisAdd BLAST169
Transmembranei359 – 379HelicalSequence analysisAdd BLAST21
Topological domaini380 – 729LumenalSequence analysisAdd BLAST350
Transmembranei730 – 750HelicalSequence analysisAdd BLAST21
Topological domaini751 – 761LumenalSequence analysisAdd BLAST11
Transmembranei762 – 782HelicalSequence analysisAdd BLAST21
Topological domaini783 – 786CytoplasmicSequence analysis4
Transmembranei787 – 807HelicalSequence analysisAdd BLAST21
Topological domaini808 – 817LumenalSequence analysis10
Transmembranei818 – 838HelicalSequence analysisAdd BLAST21
Topological domaini839 – 885CytoplasmicSequence analysisAdd BLAST47
Transmembranei886 – 906HelicalSequence analysisAdd BLAST21
Topological domaini907 – 932LumenalSequence analysisAdd BLAST26
Transmembranei933 – 953HelicalSequence analysisAdd BLAST21
Topological domaini954 – 1661CytoplasmicSequence analysisAdd BLAST708
Transmembranei1662 – 1682HelicalSequence analysisAdd BLAST21
Topological domaini1683 – 1809CytoplasmicSequence analysisAdd BLAST127
Transmembranei1810 – 1830HelicalSequence analysisAdd BLAST21
Topological domaini1831 – 1832LumenalSequence analysis2
Transmembranei1833 – 1853HelicalSequence analysisAdd BLAST21
Topological domaini1854CytoplasmicSequence analysis1
Transmembranei1855 – 1875HelicalSequence analysisAdd BLAST21
Topological domaini1876 – 1885LumenalSequence analysis10
Transmembranei1886 – 1906HelicalSequence analysisAdd BLAST21
Topological domaini1907 – 1976CytoplasmicSequence analysisAdd BLAST70
<p>This subsection of the <a href="http://www.uniprot.org/help/subcellular_location_section">'Subcellular location'</a> section describes the extent of a region that is buried within a membrane, but does not cross it.<p><a href='/help/intramem' target='_top'>More...</a></p>Intramembranei1977 – 2006By similarityAdd BLAST30
Topological domaini2007 – 3012CytoplasmicSequence analysisAdd BLAST1006
Transmembranei3013 – 3033HelicalBy similarityAdd BLAST21

GO - Cellular componenti

Keywords - Cellular componenti

Capsid protein, Host cell membrane, Host cytoplasm, Host endoplasmic reticulum, Host lipid droplet, Host membrane, Host mitochondrion, Host nucleus, Membrane, Secreted, Viral envelope protein, Virion

<p>This section provides information on the disease(s) and phenotype(s) associated with a protein.<p><a href='/help/pathology_and_biotech_section' target='_top'>More...</a></p>Pathology & Biotechi

Keywords - Diseasei

Oncogene

Chemistry databases

Drug and drug target database

More...
DrugBanki
DB03647 3-[Isopropyl(4-Methylbenzoyl)Amino]-5-Phenylthiophene-2-Carboxylic Acid

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section indicates that the initiator methionine is cleaved from the mature protein.<p><a href='/help/init_met' target='_top'>More...</a></p>Initiator methionineiRemoved; by hostBy similarity
<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00000376082 – 191Core protein p21Sequence analysisAdd BLAST190
ChainiPRO_00000376092 – 177Core protein p19By similarityAdd BLAST176
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section describes a propeptide, which is a part of a protein that is cleaved during maturation or activation. Once cleaved, a propeptide generally has no independent biological function.<p><a href='/help/propep' target='_top'>More...</a></p>PropeptideiPRO_0000037610178 – 191ER anchor for the core protein, removed in mature form by host signal peptidaseBy similarityAdd BLAST14
ChainiPRO_0000037611192 – 383Envelope glycoprotein E1Sequence analysisAdd BLAST192
ChainiPRO_0000037612384 – 750Envelope glycoprotein E2Sequence analysisAdd BLAST367
ChainiPRO_0000037613751 – 813p7By similarityAdd BLAST63
ChainiPRO_0000037614814 – 1030Protease NS2-3PROSITE-ProRule annotationAdd BLAST217
ChainiPRO_00000376151031 – 1661Serine protease NS3Sequence analysisAdd BLAST631
ChainiPRO_00000376161662 – 1715Non-structural protein 4ASequence analysisAdd BLAST54
ChainiPRO_00000376171716 – 1976Non-structural protein 4BSequence analysisAdd BLAST261
ChainiPRO_00000376181977 – 2442Non-structural protein 5ASequence analysisAdd BLAST466
ChainiPRO_00000376192443 – 3033RNA-directed RNA polymeraseSequence analysisAdd BLAST591

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei2N-acetylserine; by hostBy similarity1
Modified residuei53Phosphoserine; by hostBy similarity1
Modified residuei99Phosphoserine; by hostBy similarity1
Modified residuei116Phosphoserine; by host PKABy similarity1
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section specifies the position and type of each covalently attached glycan group (mono-, di-, or polysaccharide).<p><a href='/help/carbohyd' target='_top'>More...</a></p>Glycosylationi196N-linked (GlcNAc...) asparagine; by hostSequence analysis1
Glycosylationi209N-linked (GlcNAc...) asparagine; by hostSequence analysis1
Glycosylationi234N-linked (GlcNAc...) asparagine; by hostSequence analysis1
Glycosylationi305N-linked (GlcNAc...) asparagine; by hostSequence analysis1
Glycosylationi417N-linked (GlcNAc...) asparagine; by hostSequence analysis1
Glycosylationi423N-linked (GlcNAc...) asparagine; by hostSequence analysis1
Glycosylationi430N-linked (GlcNAc...) asparagine; by hostSequence analysis1
Glycosylationi448N-linked (GlcNAc...) asparagine; by hostSequence analysis1
Glycosylationi477N-linked (GlcNAc...) asparagine; by hostSequence analysis1
Glycosylationi534N-linked (GlcNAc...) asparagine; by hostSequence analysis1
Glycosylationi542N-linked (GlcNAc...) asparagine; by hostSequence analysis1
Glycosylationi558N-linked (GlcNAc...) asparagine; by hostSequence analysis1
Glycosylationi578N-linked (GlcNAc...) asparagine; by hostSequence analysis1
Glycosylationi627N-linked (GlcNAc...) asparagine; by hostSequence analysis1
Glycosylationi649N-linked (GlcNAc...) asparagine; by hostSequence analysis1
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section specifies the position(s) and the type of covalently attached lipid group(s).<p><a href='/help/lipid' target='_top'>More...</a></p>Lipidationi1972S-palmitoyl cysteine; by hostBy similarity1
Lipidationi1976S-palmitoyl cysteine; by hostBy similarity1
<p>This subsection of the PTM / Processing":/help/ptm_processing_section section describes the positions of cysteine residues participating in disulfide bonds.<p><a href='/help/disulfid' target='_top'>More...</a></p>Disulfide bondi2118 ↔ 2166By similarity
Modified residuei2198Phosphoserine; by host; in p56By similarity1
Modified residuei2201Phosphoserine; by host; in p58By similarity1
Modified residuei2205Phosphoserine; by host; in p58By similarity1
Modified residuei2208Phosphoserine; by host; in p58By similarity1

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

Specific enzymatic cleavages in vivo yield mature proteins. The structural proteins, core, E1, E2 and p7 are produced by proteolytic processing by host signal peptidases. The core protein is synthesized as a 21 kDa precursor which is retained in the ER membrane through the hydrophobic signal peptide. Cleavage by the signal peptidase releases the 19 kDa mature core protein. The other proteins (p7, NS2-3, NS3, NS4A, NS4B, NS5A and NS5B) are cleaved by the viral proteases (By similarity).By similarity
Envelope E1 and E2 glycoproteins are highly N-glycosylated.By similarity
Core protein is phosphorylated by host PKC and PKA.By similarity
NS5A is phosphorylated in a basal form termed p56. p58 is a hyperphosphorylated form of p56. p56 and p58 coexist in the cell in roughly equivalent amounts. Hyperphosphorylation is dependent on the presence of NS4A. Human AKT1, RPS6KB1/p70S6K, MAP2K1/MEK1, MAP2K6/MKK6 and CSNK1A1/CKI-alpha kinases may be responsible for NS5A phosphorylation (By similarity).By similarity
NS4B is palmitoylated. This modification may play a role in its polymerization or in protein-protein interactions (By similarity).By similarity
The N-terminus of a fraction of NS4B molecules seems to be relocated post-translationally from the cytoplasm to the ER lumen, with a 5th transmembrane segment. The C-terminus of NS2 may be lumenal with a fourth transmembrane segment (By similarity).By similarity
Core protein is ubiquitinated; mediated by UBE3A and leading to core protein subsequent proteasomal degradation.By similarity

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection describes interesting single amino acid sites on the sequence that are not defined in any other subsection. This subsection can be displayed in different sections (‘Function’, ‘PTM / Processing’, ‘Pathology and Biotech’) according to its content.<p><a href='/help/site' target='_top'>More...</a></p>Sitei177 – 178Cleavage; by host signal peptidaseBy similarity2
Sitei191 – 192Cleavage; by host signal peptidaseSequence analysis2
Sitei383 – 384Cleavage; by host signal peptidaseSequence analysis2
Sitei750 – 751Cleavage; by host signal peptidaseBy similarity2
Sitei813 – 814Cleavage; by host signal peptidaseBy similarity2
Sitei1030 – 1031Cleavage; by protease NS2-3PROSITE-ProRule annotation2
Sitei1661 – 1662Cleavage; by serine protease NS3Sequence analysis2
Sitei1715 – 1716Cleavage; by serine protease NS3Sequence analysis2
Sitei1976 – 1977Cleavage; by serine protease NS3Sequence analysis2
Sitei2442 – 2443Cleavage; by serine protease NS3Sequence analysis2

Keywords - PTMi

Acetylation, Disulfide bond, Glycoprotein, Lipoprotein, Palmitate, Phosphoprotein, Ubl conjugation

Proteomic databases

PRoteomics IDEntifications database

More...
PRIDEi
P26660

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

Core protein is a homomultimer that binds the C-terminal part of E1 and interacts with numerous cellular proteins. Interaction with human STAT1 SH2 domain seems to result in decreased STAT1 phosphorylation, leading to decreased IFN-stimulated gene transcription. In addition to blocking the formation of phosphorylated STAT1, the core protein also promotes ubiquitin-mediated proteasome-dependent degradation of STAT1. Interacts with, and constitutively activates human STAT3. Associates with human LTBR and TNFRSF1A receptors and possibly induces apoptosis. Binds to human SP110 isoform 3/Sp110b, HNRPK, C1QR1, YWHAE, UBE3A/E6AP, DDX3X, APOA2 and RXRA proteins. Interacts with human CREB3 nuclear transcription protein, triggering cell transformation. May interact with human p53. Also binds human cytokeratins KRT8, KRT18, KRT19 and VIM (vimentin). E1 and E2 glycoproteins form a heterodimer that binds to human LDLR, CLDN1, CD81 and SCARB1 receptors. E2 binds and inhibits human EIF2AK2/PKR. Also binds human CD209/DC-SIGN and CLEC4M/DC-SIGNR. p7 forms a homoheptamer in vitro. NS2 forms a homodimer containing a pair of composite active sites at the dimerization interface. NS2 seems to interact with all other non-structural (NS) proteins. NS4A interacts with NS3 serine protease and stabilizes its folding. NS3-NS4A complex is essential for the activation of the latter and allows membrane anchorage of NS3. NS3 interacts with human TANK-binding kinase TBK1 and MAVS. NS4B and NS5A form homodimers and seem to interact with all other non-structural (NS) proteins. NS5A also interacts with human EIF2AK2/PKR, FKBP8, GRB2, BIN1, PIK3R1, SRCAP, VAPB and with most Src-family kinases. NS5B is a homooligomer and interacts with human VAPB, HNRNPA1 and SEPT6 (By similarity).By similarity

<p>This subsection of the '<a href="http://www.uniprot.org/help/interaction_section%27">Interaction</a> section provides information about binary protein-protein interactions. The data presented in this section are a quality-filtered subset of binary interactions automatically derived from the <a href="http://www.ebi.ac.uk/intact/">IntAct database</a>. It is updated on a monthly basis. Each binary interaction is displayed on a separate line.<p><a href='/help/binary_interactions' target='_top'>More...</a></p>Binary interactionsi

WithEntry#Exp.IntActNotes
P279584EBI-6875462,EBI-6377335From Hepatitis C virus genotype 1a (isolate H).

Protein-protein interaction databases

Protein interaction database and analysis system

More...
IntActi
P26660, 7 interactors

<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

Secondary structure

13033
Legend: HelixTurnBeta strandPDB Structure known for this area
Show more details

3D structure databases

Protein Model Portal of the PSI-Nature Structural Biology Knowledgebase

More...
ProteinModelPortali
P26660

SWISS-MODEL Repository - a database of annotated 3D protein structure models

More...
SMRi
P26660

Database of comparative protein structure models

More...
ModBasei
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

Miscellaneous databases

Relative evolutionary importance of amino acids within a protein sequence

More...
EvolutionaryTracei
P26660

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Domains and Repeats

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/family_and_domains_section">Family and Domains</a> section describes the position and type of a domain, which is defined as a specific combination of secondary structures organized into a characteristic three-dimensional structure or fold.<p><a href='/help/domain' target='_top'>More...</a></p>Domaini907 – 1030Peptidase C18PROSITE-ProRule annotationAdd BLAST124
Domaini1031 – 1212Peptidase S29PROSITE-ProRule annotationAdd BLAST182
Domaini1221 – 1373Helicase ATP-bindingPROSITE-ProRule annotationAdd BLAST153
Domaini2656 – 2774RdRp catalyticPROSITE-ProRule annotationAdd BLAST119

Region

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni2 – 59Interaction with DDX3XBy similarityAdd BLAST58
Regioni2 – 23Interaction with STAT1By similarityAdd BLAST22
Regioni122 – 173Interaction with APOA2By similarityAdd BLAST52
Regioni150 – 159Mitochondrial targeting signalBy similarity10
Regioni164 – 167Important for lipid droplets localizationBy similarity4
Regioni265 – 296Fusion peptideSequence analysisAdd BLAST32
Regioni385 – 411HVR1By similarityAdd BLAST27
Regioni484 – 496CD81-binding 1Sequence analysisAdd BLAST13
Regioni524 – 555CD81-binding 2Sequence analysisAdd BLAST32
Regioni664 – 675PKR/eIF2-alpha phosphorylation homology domain (PePHD)By similarityAdd BLAST12
Regioni1683 – 1694NS3-binding (by NS4A)Sequence analysisAdd BLAST12
Regioni2124 – 2332Transcriptional activationSequence analysisAdd BLAST209
Regioni2124 – 2212FKBP8-bindingSequence analysisAdd BLAST89
Regioni2204 – 2250Basal phosphorylationBy similarityAdd BLAST47
Regioni2214 – 2275PKR-bindingSequence analysisAdd BLAST62
Regioni2249 – 2306NS4B-bindingSequence analysisAdd BLAST58
Regioni2351 – 2442Basal phosphorylationBy similarityAdd BLAST92

Motif

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes a short (usually not more than 20 amino acids) conserved sequence motif of biological significance.<p><a href='/help/motif' target='_top'>More...</a></p>Motifi5 – 13Nuclear localization signalSequence analysis9
Motifi38 – 43Nuclear localization signalSequence analysis6
Motifi58 – 64Nuclear localization signalSequence analysis7
Motifi66 – 71Nuclear localization signalSequence analysis6
Motifi1320 – 1323DECH boxBy similarity4
Motifi2322 – 2325SH3-bindingSequence analysis4
Motifi2327 – 2335Nuclear localization signalSequence analysis9

Compositional bias

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes the position of regions of compositional bias within the protein and the particular amino acids that are over-represented within those regions.<p><a href='/help/compbias' target='_top'>More...</a></p>Compositional biasi802 – 807Poly-Leu6
Compositional biasi1436 – 1439Poly-Val4
Compositional biasi2282 – 2327Pro-richAdd BLAST46
Compositional biasi2328 – 2331Poly-Arg4
Compositional biasi3013 – 3021Poly-Leu9

<p>This subsection of the ‘Family and domains’ section provides general information on the biological role of a domain. The term ‘domain’ is intended here in its wide acceptation, it may be a structural domain, a transmembrane region or a functional domain. Several domains are described in this subsection.<p><a href='/help/domain_cc' target='_top'>More...</a></p>Domaini

The transmembrane regions of envelope E1 and E2 glycoproteins are involved in heterodimer formation, ER localization, and assembly of these proteins. Envelope E2 glycoprotein contain a highly variable region called hypervariable region 1 (HVR1). E2 also contains two segments involved in CD81-binding. HVR1 is implicated in the SCARB1-mediated cell entry. CD81-binding regions may be involved in sensitivity and/or resistance to IFN-alpha therapy (By similarity).By similarity
The N-terminus of NS5A acts as membrane anchor. The central part of NS5A seems to be intrinsically disordered and interacts with NS5B and host PKR (By similarity).By similarity
The SH3-binding domain of NS5A is involved in the interaction with human Bin1, GRB2 and Src-family kinases.By similarity
The N-terminal one-third of serine protease NS3 contains the protease activity. This region contains a zinc atom that does not belong to the active site, but may play a structural rather than a catalytic role. This region is essential for the activity of protease NS2-3, maybe by contributing to the folding of the latter. The helicase activity is located in the C-terminus of NS3 (By similarity).By similarity

<p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Belongs to the hepacivirus polyprotein family.Curated

Keywords - Domaini

Transmembrane, Transmembrane helix

Phylogenomic databases

Database of Orthologous Groups

More...
OrthoDBi
VOG090000OA

Family and domain databases

Conserved Domains Database

More...
CDDi
cd00079 HELICc, 1 hit

Gene3D Structural and Functional Annotation of Protein Families

More...
Gene3Di
2.20.25.210, 1 hit
2.20.25.220, 1 hit

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR011492 DEAD_Flavivir
IPR002521 HCV_core_C
IPR002522 HCV_core_N
IPR002519 HCV_env
IPR002531 HCV_NS1
IPR002518 HCV_NS2
IPR000745 HCV_NS4a
IPR001490 HCV_NS4b
IPR002868 HCV_NS5a
IPR013193 HCV_NS5a_1B_dom
IPR038568 HCV_NS5A_1B_sf
IPR024350 HCV_NS5a_C
IPR014001 Helicase_ATP-bd
IPR001650 Helicase_C
IPR013192 NS5A_1a
IPR038170 NS5A_1a_sf
IPR027417 P-loop_NTPase
IPR009003 Peptidase_S1_PA
IPR004109 Peptidase_S29_NS3
IPR007094 RNA-dir_pol_PSvirus
IPR002166 RNA_pol_HCV

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF07652 Flavi_DEAD, 1 hit
PF01543 HCV_capsid, 1 hit
PF01542 HCV_core, 1 hit
PF01539 HCV_env, 1 hit
PF01560 HCV_NS1, 1 hit
PF01538 HCV_NS2, 1 hit
PF01006 HCV_NS4a, 1 hit
PF01001 HCV_NS4b, 1 hit
PF01506 HCV_NS5a, 1 hit
PF08300 HCV_NS5a_1a, 1 hit
PF08301 HCV_NS5a_1b, 1 hit
PF12941 HCV_NS5a_C, 1 hit
PF02907 Peptidase_S29, 1 hit
PF00998 RdRP_3, 1 hit

ProDom; a protein domain database

More...
ProDomi
View protein in ProDom or Entries sharing at least one domain
PD001388 HCV_env, 1 hit

Simple Modular Architecture Research Tool; a protein domain database

More...
SMARTi
View protein in SMART
SM00487 DEXDc, 1 hit
SM00490 HELICc, 1 hit

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF50494 SSF50494, 1 hit
SSF52540 SSF52540, 2 hits

PROSITE; a protein domain and family database

More...
PROSITEi
View protein in PROSITE
PS51693 HCV_NS2_PRO, 1 hit
PS51192 HELICASE_ATP_BIND_1, 1 hit
PS51822 HV_PV_NS3_PRO, 1 hit
PS50507 RDRP_SSRNA_POS, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>.<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is in its mature form or if it represents the precursor.<p><a href='/help/sequence_processing' target='_top'>More...</a></p>Sequence processingi: The displayed sequence is further processed into a mature form.

P26660-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MSTNPKPQRK TKRNTNRRPQ DVKFPGGGQI VGGVYLLPRR GPRLGVRATR
60 70 80 90 100
KTSERSQPRG RRQPIPKDRR STGKSWGKPG YPWPLYGNEG LGWAGWLLSP
110 120 130 140 150
RGSRPSWGPN DPRHRSRNVG KVIDTLTCGF ADLMGYIPVV GAPLGGVARA
160 170 180 190 200
LAHGVRVLED GVNFATGNLP GCSFSIFLLA LLSCITTPVS AAEVKNISTG
210 220 230 240 250
YMVTNDCTND SITWQLQAAV LHVPGCVPCE KVGNTSRCWI PVSPNVAVQQ
260 270 280 290 300
PGALTQGLRT HIDMVVMSAT LCSALYVGDL CGGVMLAAQM FIVSPQHHWF
310 320 330 340 350
VQDCNCSIYP GTITGHRMAW DMMMNWSPTA TMILAYAMRV PEVIIDIIGG
360 370 380 390 400
AHWGVMFGLA YFSMQGAWAK VVVILLLAAG VDAQTHTVGG STAHNARTLT
410 420 430 440 450
GMFSLGARQK IQLINTNGSW HINRTALNCN DSLHTGFLAS LFYTHSFNSS
460 470 480 490 500
GCPERMSACR SIEAFRVGWG ALQYEDNVTN PEDMRPYCWH YPPRQCGVVS
510 520 530 540 550
ASSVCGPVYC FTPSPVVVGT TDRLGAPTYT WGENETDVFL LNSTRPPQGS
560 570 580 590 600
WFGCTWMNST GYTKTCGAPP CRIRADFNAS MDLLCPTDCF RKHPDTTYIK
610 620 630 640 650
CGSGPWLTPR CLIDYPYRLW HYPCTVNYTI FKIRMYVGGV EHRLTAACNF
660 670 680 690 700
TRGDRCNLED RDRSQLSPLL HSTTEWAILP CTYSDLPALS TGLLHLHQNI
710 720 730 740 750
VDVQFMYGLS PALTKYIVRW EWVVLLFLLL ADARVCACLW MLILLGQAEA
760 770 780 790 800
ALEKLVVLHA ASAASCNGFL YFVIFFVAAW YIKGRVVPLA TYSLTGLWSF
810 820 830 840 850
GLLLLALPQQ AYAYDASVHG QIGAALLVLI TLFTLTPGYK TLLSRFLWWL
860 870 880 890 900
CYLLTLAEAM VQEWAPPMQV RGGRDGIIWA VAIFCPGVVF DITKWLLAVL
910 920 930 940 950
GPAYLLKGAL TRVPYFVRAH ALLRMCTMVR HLAGGRYVQM VLLALGRWTG
960 970 980 990 1000
TYIYDHLTPM SDWAANGLRD LAVAVEPIIF SPMEKKVIVW GAETAACGDI
1010 1020 1030 1040 1050
LHGLPVSARL GREVLLGPAD GYTSKGWSLL APITAYAQQT RGLLGTIVVS
1060 1070 1080 1090 1100
MTGRDKTEQA GEIQVLSTVT QSFLGTTISG VLWTVYHGAG NKTLAGSRGP
1110 1120 1130 1140 1150
VTQMYSSAEG DLVGWPSPPG TKSLEPCTCG AVDLYLVTRN ADVIPARRRG
1160 1170 1180 1190 1200
DKRGALLSPR PLSTLKGSSG GPVLCPRGHA VGVFRAAVCS RGVAKSIDFI
1210 1220 1230 1240 1250
PVETLDIVTR SPTFSDNSTP PAVPQTYQVG YLHAPTGSGK STKVPVAYAA
1260 1270 1280 1290 1300
QGYKVLVLNP SVAATLGFGA YLSKAHGINP NIRTGVRTVT TGAPITYSTY
1310 1320 1330 1340 1350
GKFLADGGCA GGAYDIIICD ECHAVDSTTI LGIGTVLDQA ETAGVRLTVL
1360 1370 1380 1390 1400
ATATPPGSVT TPHPNIEEVA LGQEGEIPFY GRAIPLSYIK GGRHLIFCHS
1410 1420 1430 1440 1450
KKKCDELAAA LRGMGLNAVA YYRGLDVSVI PTQGDVVVVA TDALMTGFTG
1460 1470 1480 1490 1500
DFDSVIDCNV AVTQVVDFSL DPTFTITTQT VPQDAVSRSQ RRGRTGRGRL
1510 1520 1530 1540 1550
GIYRYVSTGE RASGMFDSVV LCECYDAGAA WYELTPAETT VRLRAYFNTP
1560 1570 1580 1590 1600
GLPVCQDHLE FWEAVFTGLT HIDAHFLSQT KQSGENFAYL TAYQATVCAR
1610 1620 1630 1640 1650
AKAPPPSWDV MWKCLTRLKP TLVGPTPLLY RLGSVTNEVT LTHPVTKYIA
1660 1670 1680 1690 1700
TCMQADLEVM TSTWVLAGGV LAAVAAYCLA TGCVCIIGRL HVNQRAVVAP
1710 1720 1730 1740 1750
DKEVLYEAFD EMEECASRAA LIEEGQRIAE MLKSKIQGLL QQASKQAQDI
1760 1770 1780 1790 1800
QPAVQASWPK VEQFWAKHMW NFISGIQYLA GLSTLPGNPA VASMMAFSAA
1810 1820 1830 1840 1850
LTSPLSTSTT ILLNILGGWL ASQIAPPAGA TGFVVSGLVG AAVGSIGLGK
1860 1870 1880 1890 1900
VLVDILAGYG AGISGALVAF KIMSGEKPSM EDVVNLLPGI LSPGALVVGV
1910 1920 1930 1940 1950
ICAAILRRHV GPGEGAVQWM NRLIAFASRG NHVAPTHYVT ESDASQRVTQ
1960 1970 1980 1990 2000
LLGSLTITSL LRRLHNWITE DCPIPCSGSW LRDVWDWVCT ILTDFKNWLT
2010 2020 2030 2040 2050
SKLFPKMPGL PFISCQKGYK GVWAGTGIMT TRCPCGANIS GNVRLGSMRI
2060 2070 2080 2090 2100
TGPKTCMNIW QGTFPINCYT EGQCVPKPAP NFKIAIWRVA ASEYAEVTQH
2110 2120 2130 2140 2150
GSYHYITGLT TDNLKVPCQL PSPEFFSWVD GVQIHRFAPI PKPFFRDEVS
2160 2170 2180 2190 2200
FCVGLNSFVV GSQLPCDPEP DTDVLTSMLT DPSHITAETA ARRLARGSPP
2210 2220 2230 2240 2250
SEASSSASQL SAPSLRATCT THGKAYDVDM VDANLFMGGD VTRIESESKV
2260 2270 2280 2290 2300
VVLDSLDPMV EERSDLEPSI PSEYMLPKKR FPPALPAWAR PDYNPPLVES
2310 2320 2330 2340 2350
WKRPDYQPAT VAGCALPPPK KTPTPPPRRR RTVGLSESSI ADALQQLAIK
2360 2370 2380 2390 2400
SFGQPPPSGD SGLSTGADAA DSGSRTPPDE LALSETGSIS SMPPLEGEPG
2410 2420 2430 2440 2450
DPDLEPEQVE LQPPPQGGVV TPGSGSGSWS TCSEEDDSVV CCSMSYSWTG
2460 2470 2480 2490 2500
ALITPCSPEE EKLPINPLSN SLLRYHNKVY CTTSKSASLR AKKVTFDRMQ
2510 2520 2530 2540 2550
ALDAHYDSVL KDIKLAASKV TARLLTLEEA CQLTPPHSAR SKYGFGAKEV
2560 2570 2580 2590 2600
RSLSGRAVNH IKSVWKDLLE DTQTPIPTTI MAKNEVFCVD PTKGGKKAAR
2610 2620 2630 2640 2650
LIVYPDLGVR VCEKMALYDI TQKLPQAVMG ASYGFQYSPA QRVEFLLKAW
2660 2670 2680 2690 2700
AEKKDPMGFS YDTRCFDSTV TERDIRTEES IYRACSLPEE AHTAIHSLTE
2710 2720 2730 2740 2750
RLYVGGPMFN SKGQTCGYRR CRASGVLTTS MGNTITCYVK ALAACKAAGI
2760 2770 2780 2790 2800
IAPTMLVCGD DLVVISESQG TEEDERNLRA FTEAMTRYSA PPGDPPRPEY
2810 2820 2830 2840 2850
DLELITSCSS NVSVALGPQG RRRYYLTRDP TTPIARAAWE TVRHSPVNSW
2860 2870 2880 2890 2900
LGNIIQYAPT IWARMVLMTH FFSILMAQDT LDQNLNFEMY GAVYSVSPLD
2910 2920 2930 2940 2950
LPAIIERLHG LDAFSLHTYT PHELTRVASA LRKLGAPPLR AWKSRARAVR
2960 2970 2980 2990 3000
ASLISRGGRA AVCGRYLFNW AVKTKLKLTP LPEARLLDLS SWFTVGAGGG
3010 3020 3030
DIYHSVSRAR PRLLLLGLLL LFVGVGLFLL PAR
Length:3,033
Mass (Da):329,169
Last modified:January 23, 2007 - v3
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:iF957F5C1A273BE9E
GO

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
D00944 Genomic RNA Translation: BAA00792.1

Protein sequence database of the Protein Information Resource

More...
PIRi
JQ1303

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

<p>This subsection of the <a href="http://www.uniprot.org/manual/cross_references_section">Cross-references</a> section provides links to various web resources that are relevant for a specific protein.<p><a href='/help/web_resource' target='_top'>More...</a></p>Web resourcesi

Virus Pathogen Resource

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
D00944 Genomic RNA Translation: BAA00792.1
PIRiJQ1303

3D structure databases

Select the link destinations:

Protein Data Bank Europe

More...
PDBei

Protein Data Bank RCSB

More...
RCSB PDBi

Protein Data Bank Japan

More...
PDBji
Links Updated
PDB entryMethodResolution (Å)ChainPositionsPDBsum
1YUYX-ray1.90A2443-3012[»]
1YV2X-ray2.50A2443-3012[»]
1YVXX-ray2.00A2443-3012[»]
1YVZX-ray2.20A2443-3012[»]
2XWHX-ray1.80A2443-3005[»]
4ADPX-ray1.90A2443-3012[»]
ProteinModelPortaliP26660
SMRiP26660
ModBaseiSearch...
MobiDBiSearch...

Protein-protein interaction databases

IntActiP26660, 7 interactors

Chemistry databases

DrugBankiDB03647 3-[Isopropyl(4-Methylbenzoyl)Amino]-5-Phenylthiophene-2-Carboxylic Acid

Proteomic databases

PRIDEiP26660

Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Organism-specific databases

European Hepatitis C Virus Database

More...
euHCVdbi
D00944

Phylogenomic databases

OrthoDBiVOG090000OA

Miscellaneous databases

EvolutionaryTraceiP26660

Family and domain databases

CDDicd00079 HELICc, 1 hit
Gene3Di2.20.25.210, 1 hit
2.20.25.220, 1 hit
InterProiView protein in InterPro
IPR011492 DEAD_Flavivir
IPR002521 HCV_core_C
IPR002522 HCV_core_N
IPR002519 HCV_env
IPR002531 HCV_NS1
IPR002518 HCV_NS2
IPR000745 HCV_NS4a
IPR001490 HCV_NS4b
IPR002868 HCV_NS5a
IPR013193 HCV_NS5a_1B_dom
IPR038568 HCV_NS5A_1B_sf
IPR024350 HCV_NS5a_C
IPR014001 Helicase_ATP-bd
IPR001650 Helicase_C
IPR013192 NS5A_1a
IPR038170 NS5A_1a_sf
IPR027417 P-loop_NTPase
IPR009003 Peptidase_S1_PA
IPR004109 Peptidase_S29_NS3
IPR007094 RNA-dir_pol_PSvirus
IPR002166 RNA_pol_HCV
PfamiView protein in Pfam
PF07652 Flavi_DEAD, 1 hit
PF01543 HCV_capsid, 1 hit
PF01542 HCV_core, 1 hit
PF01539 HCV_env, 1 hit
PF01560 HCV_NS1, 1 hit
PF01538 HCV_NS2, 1 hit
PF01006 HCV_NS4a, 1 hit
PF01001 HCV_NS4b, 1 hit
PF01506 HCV_NS5a, 1 hit
PF08300 HCV_NS5a_1a, 1 hit
PF08301 HCV_NS5a_1b, 1 hit
PF12941 HCV_NS5a_C, 1 hit
PF02907 Peptidase_S29, 1 hit
PF00998 RdRP_3, 1 hit
ProDomiView protein in ProDom or Entries sharing at least one domain
PD001388 HCV_env, 1 hit
SMARTiView protein in SMART
SM00487 DEXDc, 1 hit
SM00490 HELICc, 1 hit
SUPFAMiSSF50494 SSF50494, 1 hit
SSF52540 SSF52540, 2 hits
PROSITEiView protein in PROSITE
PS51693 HCV_NS2_PRO, 1 hit
PS51192 HELICASE_ATP_BIND_1, 1 hit
PS51822 HV_PV_NS3_PRO, 1 hit
PS50507 RDRP_SSRNA_POS, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiPOLG_HCVJ6
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: P26660
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: August 1, 1992
Last sequence update: January 23, 2007
Last modified: December 5, 2018
This is version 175 of the entry and version 3 of the sequence. See complete history.
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programViral Protein Annotation Program

<p>This section contains any relevant information that doesn’t fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

3D-structure, Complete proteome

Documents

  1. PDB cross-references
    Index of Protein Data Bank (PDB) cross-references
  2. SIMILARITY comments
    Index of protein domains and families
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again