Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 126 (18 Sep 2019)
Sequence version 2 (01 Oct 1996)
Previous versions | rss
Help videoAdd a publicationFeedback
Protein

Genome polyprotein

Gene
N/A
Organism
Dengue virus type 2 (strain Thailand/PUO-218/1980) (DENV-2)
Status
Reviewed-Annotation score:

Annotation score:5 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at protein leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Peptide pr: Prevents premature fusion activity of envelope proteins in trans-Golgi by binding to envelope protein E at pH6.0. After virion release in extracellular space, gets dissociated from E dimers.By similarity
Protein prM: Acts as a chaperone for envelope protein E during intracellular virion assembly by masking and inactivating envelope protein E fusion peptide. prM is the only viral peptide matured by host furin in the trans-Golgi network probably to avoid catastrophic activation of the viral fusion activity in acidic Golgi compartment prior to virion release. prM-E cleavage is inefficient, and many virions are only partially matured. These uncleaved prM would play a role in immune evasion.By similarity
Small envelope protein M: May play a role in virus budding. Exerts cytotoxic effects by activating a mitochondrial apoptotic pathway through M ectodomain. May display a viroporin activity.By similarity
Envelope protein E: Binds to host cell surface receptor and mediates fusion between viral and cellular membranes. Envelope protein is synthesized in the endoplasmic reticulum in the form of heterodimer with protein prM. They play a role in virion budding in the ER, and the newly formed immature particle is covered with 60 spikes composed of heterodimer between precursor prM and envelope protein E. The virion is transported to the Golgi apparatus where the low pH causes dissociation of PrM-E heterodimers and formation of E homodimers. prM-E cleavage is inefficient, and many virions are only partially matured. These uncleaved prM would play a role in immune evasion.By similarity
Non-structural protein 1: Involved in immune evasion, pathogenesis and viral replication. Once cleaved off the polyprotein, is targeted to three destinations: the viral replication cycle, the plasma membrane and the extracellular compartment. Essential for viral replication. Required for formation of the replication complex and recruitment of other non-structural proteins to the ER-derived membrane structures. Excreted as a hexameric lipoparticle that plays a role against host immune response. Antagonizing the complement function. Binds to the host macrophages and dendritic cells. Inhibits signal transduction originating from Toll-like receptor 3 (TLR3).By similarity
Non-structural protein 1: Disrupts the host endothelial glycocalyx layer of host pulmonary microvascular endothelial cells, inducing degradation of sialic acid and shedding of heparan sulfate proteoglycans. NS1 induces expression of sialidases, heparanase, and activates cathepsin L, which activates heparanase via enzymatic cleavage. These effects are probably linked to the endothelial hyperpermeability observed in severe dengue disease.By similarity

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionSuppressor of RNA silencing, Viral nucleoprotein
Biological processClathrin-mediated endocytosis of virus by host, Fusion of virus membrane with host endosomal membrane, Fusion of virus membrane with host membrane, Host-virus interaction, Viral attachment to host cell, Viral penetration into host cytoplasm, Virus endocytosis by host, Virus entry into host cell
LigandZinc

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Genome polyprotein
Cleaved into the following 5 chains:
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiDengue virus type 2 (strain Thailand/PUO-218/1980) (DENV-2)
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri11068 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiVirusesRiboviriaFlaviviridaeFlavivirus
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section only exists in viral entries and indicates the host(s) either as a specific organism or taxonomic group of organisms that are susceptible to be infected by a virus.<p><a href='/help/virus_host' target='_top'>More...</a></p>Virus hostiAedimorphus [TaxID: 53540]
Diceromyia [TaxID: 53539]
Erythrocebus patas (Red guenon) (Cercopithecus patas) [TaxID: 9538]
Homo sapiens (Human) [TaxID: 9606]
Stegomyia [TaxID: 53541]

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Peptide pr :
Small envelope protein M :
Envelope protein E :
Non-structural protein 1 :

Topology

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/subcellular_location_section">'Subcellular location'</a> section describes the extent of a membrane-spanning region of the protein. It denotes the presence of both alpha-helical transmembrane regions and the membrane spanning regions of beta-barrel transmembrane proteins.<p><a href='/help/transmem' target='_top'>More...</a></p>Transmembranei2 – 22HelicalSequence analysisAdd BLAST21
<p>This subsection of the <a href="http://www.uniprot.org/help/subcellular_location_section">'Subcellular location'</a> section describes the subcellular compartment where each non-membrane region of a membrane-spanning protein is found.<p><a href='/help/topo_dom' target='_top'>More...</a></p>Topological domaini23 – 138ExtracellularSequence analysisAdd BLAST116
Transmembranei139 – 159HelicalSequence analysisAdd BLAST21
Topological domaini160 – 165CytoplasmicSequence analysis6
Transmembranei166 – 180HelicalSequence analysisAdd BLAST15
Topological domaini181 – 625ExtracellularSequence analysisAdd BLAST445
Transmembranei626 – 646HelicalSequence analysisAdd BLAST21
Topological domaini647 – 652CytoplasmicSequence analysis6
Transmembranei653 – 673HelicalSequence analysisAdd BLAST21
Topological domaini674 – ›679ExtracellularSequence analysis›6

GO - Cellular componenti

Keywords - Cellular componenti

Host endoplasmic reticulum, Host membrane, Membrane, Secreted, Viral envelope protein, Virion

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_0000405220‹1 – ›679Genome polyproteinAdd BLAST›679
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section describes a propeptide, which is a part of a protein that is cleaved during maturation or activation. Once cleaved, a propeptide generally has no independent biological function.<p><a href='/help/propep' target='_top'>More...</a></p>PropeptideiPRO_00000379851 – 14ER anchor for the capsid protein C, removed in mature form by serine protease NS3By similarityAdd BLAST14
ChainiPRO_000030829115 – 180Protein prMBy similarityAdd BLAST166
ChainiPRO_000030829215 – 105Peptide prBy similarityAdd BLAST91
ChainiPRO_0000037986106 – 180Small envelope protein MBy similarityAdd BLAST75
ChainiPRO_0000037987181 – 675Envelope protein EBy similarityAdd BLAST495
ChainiPRO_0000037988676 – ›679Non-structural protein 1By similarity›4

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section specifies the position and type of each covalently attached glycan group (mono-, di-, or polysaccharide).<p><a href='/help/carbohyd' target='_top'>More...</a></p>Glycosylationi83N-linked (GlcNAc...) asparagine; by hostSequence analysis1
<p>This subsection of the PTM / Processing":/help/ptm_processing_section section describes the positions of cysteine residues participating in disulfide bonds.<p><a href='/help/disulfid' target='_top'>More...</a></p>Disulfide bondi183 ↔ 210By similarity
Disulfide bondi240 ↔ 301By similarity
Glycosylationi247N-linked (GlcNAc...) asparagine; by hostSequence analysis1
Disulfide bondi254 ↔ 285By similarity
Disulfide bondi272 ↔ 296By similarity
Glycosylationi333N-linked (GlcNAc...) asparagine; by hostSequence analysis1
Disulfide bondi365 ↔ 465By similarity
Disulfide bondi482 ↔ 513By similarity

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

Protein prM: Cleaved in post-Golgi vesicles by a host furin, releasing the mature small envelope protein M, and peptide pr. This cleavage is incomplete as up to 30% of viral particles still carry uncleaved prM.By similarity
Envelope protein E: N-glycosylated.By similarity
Non-structural protein 1: Non-structural protein 1: N-glycosylated. The excreted form is glycosylated and this is required for efficient secretion of the protein from infected cells.By similarity
Genome polyprotein: Specific enzymatic cleavages in vivo yield mature proteins. Cleavages in the lumen of endoplasmic reticulum are performed by host signal peptidase, wereas cleavages in the cytoplasmic side are performed by serine protease NS3. Signal cleavage at the 2K-4B site requires a prior NS3 protease-mediated cleavage at the 4A-2K site.By similarity

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection describes interesting single amino acid sites on the sequence that are not defined in any other subsection. This subsection can be displayed in different sections (‘Function’, ‘PTM / Processing’, ‘Pathology and Biotech’) according to its content.<p><a href='/help/site' target='_top'>More...</a></p>Sitei14 – 15Cleavage; by host signal peptidaseBy similarity2
Sitei105 – 106Cleavage; by host furinSequence analysisBy similarity2
Sitei180 – 181Cleavage; by host signal peptidaseBy similarity2
Sitei675 – 676Cleavage; by host signal peptidaseBy similarity2

Keywords - PTMi

Cleavage on pair of basic residues, Disulfide bond, Glycoprotein

Proteomic databases

PRoteomics IDEntifications database

More...
PRIDEi
P18356

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

Protein prM: Forms heterodimers with envelope protein E in the endoplasmic reticulum and Golgi. Envelope protein E: Homodimer; in the endoplasmic reticulum and Golgi.

Interacts with protein prM.

Interacts with non-structural protein 1.

By similarity

GO - Molecular functioni

<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

Secondary structure

1679
Legend: HelixTurnBeta strandPDB Structure known for this area
Show more details

3D structure databases

SWISS-MODEL Repository - a database of annotated 3D protein structure models

More...
SMRi
P18356

Database of comparative protein structure models

More...
ModBasei
Search...

Protein Data Bank in Europe - Knowledge Base

More...
PDBe-KBi
Search...

Miscellaneous databases

Relative evolutionary importance of amino acids within a protein sequence

More...
EvolutionaryTracei
P18356

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Region

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni278 – 291Fusion peptideBy similarityAdd BLAST14

<p>This subsection of the ‘Family and domains’ section provides general information on the biological role of a domain. The term ‘domain’ is intended here in its wide acceptation, it may be a structural domain, a transmembrane region or a functional domain. Several domains are described in this subsection.<p><a href='/help/domain_cc' target='_top'>More...</a></p>Domaini

The transmembrane domains of the small envelope protein M and envelope protein E contain an endoplasmic reticulum retention signal.By similarity

Keywords - Domaini

Transmembrane, Transmembrane helix

Family and domain databases

Conserved Domains Database

More...
CDDi
cd12149 Flavi_E_C, 1 hit

Gene3D Structural and Functional Annotation of Protein Families

More...
Gene3Di
1.10.8.970, 1 hit
1.20.1280.260, 1 hit
2.60.260.50, 1 hit
2.60.40.350, 1 hit
2.60.98.10, 1 hit
3.30.387.10, 1 hit
3.30.67.10, 1 hit

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR000069 Env_glycoprot_M_flavivir
IPR038302 Env_glycoprot_M_sf_flavivir
IPR013755 Flav_gly_cen_dom_subdom1
IPR027287 Flavi_E_Ig-like
IPR026470 Flavi_E_Stem/Anchor_dom
IPR038345 Flavi_E_Stem/Anchor_dom_sf
IPR002535 Flavi_propep
IPR038688 Flavi_propep_sf
IPR000336 Flavivir/Alphavir_Ig-like_sf
IPR011998 Glycoprot_cen/dimer
IPR036253 Glycoprot_cen/dimer_sf
IPR038055 Glycoprot_E_dimer_dom
IPR013756 GlyE_cen_dom_subdom2
IPR014756 Ig_E-set

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF02832 Flavi_glycop_C, 1 hit
PF00869 Flavi_glycoprot, 1 hit
PF01004 Flavi_M, 1 hit
PF01570 Flavi_propep, 1 hit

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF56983 SSF56983, 1 hit
SSF81296 SSF81296, 1 hit

TIGRFAMs; a protein family database

More...
TIGRFAMsi
TIGR04240 flavi_E_stem, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Fragment.

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is in its mature form or if it represents the precursor.<p><a href='/help/sequence_processing' target='_top'>More...</a></p>Sequence processingi: The displayed sequence is further processed into a mature form.

P18356-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
SAGMIIMLIP TVMAFHLTTR NGEPHMIVSR QEKGKSLLFK TEDGVNMCTL
60 70 80 90 100
MAMDLGELCE DTITYKCPLL RQNEPEDIDC WCNSTSTWVT YGTCTTTGEH
110 120 130 140 150
RREKRSVALV PHVGMGLETR TETWMSSEGA WKHAQRIEIW ILRHPGFTIM
160 170 180 190 200
AAILAYTIGT THFQRALIFI LLTAVAPSMT MRCIGISNRD FVEGVSGGSW
210 220 230 240 250
VDIVLEHGSC VTTMAKNKPT LDFELIKTEA KQPATLRKYC IEAKLTNTTT
260 270 280 290 300
ESRCPTQGEP SLNEEQDKRF VCKHSMVDRG WGNGCGLFGK GGIVTCAMFT
310 320 330 340 350
CKKNMEGKVV QPENLEYTIV VTPHSGEEHA VGNDTGKHGK EIKVTPQSSI
360 370 380 390 400
TEAELTGYGT VTMECSPRTG LDFNEMVLLQ MENKAWLVHR QWFLDLPLPW
410 420 430 440 450
LPGADTQGSN WIQKETLVTF KNPHAKKQDV VVLGSQEGAM HTALTGATEI
460 470 480 490 500
QMSSGNLLFT GHLKCRLRMD KLQLKGMSYS MCTGKFKVVK EIAETQHGTI
510 520 530 540 550
VIRVQYEGDG SPCKIPFEIM DLEKRHVLGR LITVNPIVTE KDSPVNIEAE
560 570 580 590 600
PPFGDSYIII GVEPGQLKLN WFKKGSSIGQ MFETTMRGAK RMAILGDTAW
610 620 630 640 650
DFGSLGGVFT SIGKALHQVF GAIYGAAFSG VSWTMKILIG VIITWIGMNS
660 670
RSTSLSVSLV LVGIVTLYLG VMVQADSGC
Length:679
Mass (Da):74,932
Last modified:October 1, 1996 - v2
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:i1B5B881FC015F46B
GO

Experimental Info

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Sequence’ section is used for sequence fragments to indicate that the residue at the extremity of the sequence is not the actual terminal residue in the complete protein sequence.<p><a href='/help/non_ter' target='_top'>More...</a></p>Non-terminal residuei11
Non-terminal residuei6791

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
D00345 Genomic RNA Translation: BAA00254.1

Protein sequence database of the Protein Information Resource

More...
PIRi
PS0043

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

<p>This subsection of the <a href="http://www.uniprot.org/manual/cross_references_section">Cross-references</a> section provides links to various web resources that are relevant for a specific protein.<p><a href='/help/web_resource' target='_top'>More...</a></p>Web resourcesi

Virus Pathogen Resource

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
D00345 Genomic RNA Translation: BAA00254.1
PIRiPS0043

3D structure databases

Select the link destinations:

Protein Data Bank Europe

More...
PDBei

Protein Data Bank RCSB

More...
RCSB PDBi

Protein Data Bank Japan

More...
PDBji
Links Updated
PDB entryMethodResolution (Å)ChainPositionsPDBsum
2JSFNMR-A469-577[»]
2R6Pelectron microscopy24.00A/B/C181-570[»]
3C6Relectron microscopy25.00A/B/C181-575[»]
D/E/F15-95[»]
3IXYelectron microscopy-D/E/F15-95[»]
3IYAelectron microscopy-A/B/C181-575[»]
D/E/F15-95[»]
SMRiP18356
ModBaseiSearch...
PDBe-KBiSearch...

Proteomic databases

PRIDEiP18356

Protocols and materials databases

ABCD curated depository of sequenced antibodies

More...
ABCDi
P18356

Miscellaneous databases

EvolutionaryTraceiP18356

Family and domain databases

CDDicd12149 Flavi_E_C, 1 hit
Gene3Di1.10.8.970, 1 hit
1.20.1280.260, 1 hit
2.60.260.50, 1 hit
2.60.40.350, 1 hit
2.60.98.10, 1 hit
3.30.387.10, 1 hit
3.30.67.10, 1 hit
InterProiView protein in InterPro
IPR000069 Env_glycoprot_M_flavivir
IPR038302 Env_glycoprot_M_sf_flavivir
IPR013755 Flav_gly_cen_dom_subdom1
IPR027287 Flavi_E_Ig-like
IPR026470 Flavi_E_Stem/Anchor_dom
IPR038345 Flavi_E_Stem/Anchor_dom_sf
IPR002535 Flavi_propep
IPR038688 Flavi_propep_sf
IPR000336 Flavivir/Alphavir_Ig-like_sf
IPR011998 Glycoprot_cen/dimer
IPR036253 Glycoprot_cen/dimer_sf
IPR038055 Glycoprot_E_dimer_dom
IPR013756 GlyE_cen_dom_subdom2
IPR014756 Ig_E-set
PfamiView protein in Pfam
PF02832 Flavi_glycop_C, 1 hit
PF00869 Flavi_glycoprot, 1 hit
PF01004 Flavi_M, 1 hit
PF01570 Flavi_propep, 1 hit
SUPFAMiSSF56983 SSF56983, 1 hit
SSF81296 SSF81296, 1 hit
TIGRFAMsiTIGR04240 flavi_E_stem, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiPOLG_DEN2U
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: P18356
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: November 1, 1990
Last sequence update: October 1, 1996
Last modified: September 18, 2019
This is version 126 of the entry and version 2 of the sequence. See complete history.
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programViral Protein Annotation Program

<p>This section contains any relevant information that doesn’t fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

3D-structure

Documents

  1. PDB cross-references
    Index of Protein Data Bank (PDB) cross-references
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again