Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 133 (08 May 2019)
Sequence version 3 (26 Sep 2001)
Previous versions | rss
Other tutorials and videosHelp videoFeedback
Protein

Structural polyprotein

Gene
N/A
Organism
Ross river virus (strain T48) (RRV)
Status
Reviewed-Annotation score:

Annotation score:5 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at protein leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Capsid protein: Forms an icosahedral capsid with a T=4 symmetry composed of 240 copies of the capsid protein surrounded by a lipid membrane through which penetrate 80 spikes composed of trimers of E1-E2 heterodimers (By similarity). The capsid protein binds to the viral RNA genome at a site adjacent to a ribosome binding site for viral genome translation following genome release (By similarity). Possesses a protease activity that results in its autocatalytic cleavage from the nascent structural protein (By similarity). Following its self-cleavage, the capsid protein transiently associates with ribosomes, and within several minutes the protein binds to viral RNA and rapidly assembles into icosahedric core particles (By similarity). The resulting nucleocapsid eventually associates with the cytoplasmic domain of the spike glycoprotein E2 at the cell membrane, leading to budding and formation of mature virions (By similarity). In case of infection, new virions attach to target cells and after clathrin-mediated endocytosis their membrane fuses with the host endosomal membrane (By similarity). This leads to the release of the nucleocapsid into the cytoplasm, followed by an uncoating event necessary for the genomic RNA to become accessible (By similarity). The uncoating might be triggered by the interaction of capsid proteins with ribosomes (By similarity). Binding of ribosomes would release the genomic RNA since the same region is genomic RNA-binding and ribosome-binding (By similarity).By similarity
Assembly protein E3: Provides the signal sequence for the translocation of the precursor of protein E3/E2 to the host endoplasmic reticulum. Furin-cleaved E3 remains associated with spike glycoprotein E1 and mediates pH protection of the latter during the transport via the secretory pathway. After virion release from the host cell, the assembly protein E3 is gradually released in the extracellular space.By similarity
Spike glycoprotein E2: Plays a role in viral attachment to target host cell, by binding to the cell receptor. Synthesized as a p62 precursor which is processed by furin at the cell membrane just before virion budding, giving rise to E2-E1 heterodimer. The p62-E1 heterodimer is stable, whereas E2-E1 is unstable and dissociate at low pH. p62 is processed at the last step, presumably to avoid E1 fusion activation before its final export to cell surface. E2 C-terminus contains a transitory transmembrane that would be disrupted by palmitoylation, resulting in reorientation of the C-terminal tail from lumenal to cytoplasmic side. This step is critical since E2 C-terminus is involved in budding by interacting with capsid proteins. This release of E2 C-terminus in cytoplasm occurs lately in protein export, and precludes premature assembly of particles at the endoplasmic reticulum membrane.By similarity
6K protein: Constitutive membrane protein involved in virus glycoprotein processing, cell permeabilization, and the budding of viral particles. Disrupts the calcium homeostasis of the cell, probably at the endoplasmic reticulum level. This leads to cytoplasmic calcium elevation. Because of its lipophilic properties, the 6K protein is postulated to influence the selection of lipids that interact with the transmembrane domains of the glycoproteins, which, in turn, affects the deformability of the bilayer required for the extreme curvature that occurs as budding proceeds. Present in low amount in virions, about 3% compared to viral glycoproteins.By similarity
Spike glycoprotein E1: Class II viral fusion protein. Fusion activity is inactive as long as E1 is bound to E2 in mature virion. After virus attachment to target cell and endocytosis, acidification of the endosome would induce dissociation of E1/E2 heterodimer and concomitant trimerization of the E1 subunits. This E1 trimer is fusion active, and promotes release of viral nucleocapsid in cytoplasm after endosome and viral membrane fusion. Efficient fusion requires the presence of cholesterol and sphingolipid in the target membrane. Fusion is optimal at levels of about 1 molecule of cholesterol per 2 molecules of phospholipids, and is specific for sterols containing a 3-beta-hydroxyl group.By similarity

Miscellaneous

Structural polyprotein: Translated from a subgenomic RNA synthesized during togavirus replication.By similarity

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes the catalytic activity of an enzyme, i.e. a chemical reaction that the enzyme catalyzes.<p><a href='/help/catalytic_activity' target='_top'>More...</a></p>Catalytic activityi

  • Autocatalytic release of the core protein from the N-terminus of the togavirus structural polyprotein by hydrolysis of a -Trp-|-Ser- bond.By similarity EC:3.4.21.90

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Function’ section is used for enzymes and indicates the residues directly involved in catalysis.<p><a href='/help/act_site' target='_top'>More...</a></p>Active sitei148Charge relay systemPROSITE-ProRule annotation1
Active sitei170Charge relay systemPROSITE-ProRule annotation1
<p>This subsection describes interesting single amino acid sites on the sequence that are not defined in any other subsection. This subsection can be displayed in different sections (‘Function’, ‘PTM / Processing’, ‘Pathology and Biotech’) according to its content.<p><a href='/help/site' target='_top'>More...</a></p>Sitei196Involved in dimerization of the capsid proteinBy similarity1
Active sitei222Charge relay systemPROSITE-ProRule annotation1
Sitei229Involved in dimerization of the capsid proteinBy similarity1

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionHydrolase, Protease, RNA-binding, Serine protease
Biological processFusion of virus membrane with host endosomal membrane, Fusion of virus membrane with host membrane, Host-virus interaction, Viral attachment to host cell, Viral penetration into host cytoplasm, Virus entry into host cell

Protein family/group databases

Transport Classification Database

More...
TCDBi
1.G.4.1.2 the viral pore-forming membrane fusion protein-4 (vmfp4) family

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Structural polyprotein
Alternative name(s):
p130
Cleaved into the following 6 chains:
Capsid protein (EC:3.4.21.90By similarity)
Alternative name(s):
Coat protein
Short name:
C
Alternative name(s):
p62
pE2
Alternative name(s):
E2 envelope glycoprotein
Alternative name(s):
E1 envelope glycoprotein
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiRoss river virus (strain T48) (RRV)
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri11032 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiVirusesssRNA virusesssRNA positive-strand viruses, no DNA stageTogaviridaeAlphavirus
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section only exists in viral entries and indicates the host(s) either as a specific organism or taxonomic group of organisms that are susceptible to be infected by a virus.<p><a href='/help/virus_host' target='_top'>More...</a></p>Virus hostiAedes [TaxID: 7158]
Culex annulirostris (Common banded mosquito) [TaxID: 162997]
Homo sapiens (Human) [TaxID: 9606]
Macropus sp. (kangaroo) [TaxID: 9322]

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Capsid protein :
Spike glycoprotein E2 :
6K protein :
Spike glycoprotein E1 :

Topology

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/subcellular_location_section">'Subcellular location'</a> section describes the subcellular compartment where each non-membrane region of a membrane-spanning protein is found.<p><a href='/help/topo_dom' target='_top'>More...</a></p>Topological domaini271 – 694ExtracellularSequence analysisAdd BLAST424
<p>This subsection of the <a href="http://www.uniprot.org/help/subcellular_location_section">'Subcellular location'</a> section describes the extent of a membrane-spanning region of the protein. It denotes the presence of both alpha-helical transmembrane regions and the membrane spanning regions of beta-barrel transmembrane proteins.<p><a href='/help/transmem' target='_top'>More...</a></p>Transmembranei695 – 715HelicalSequence analysisAdd BLAST21
Topological domaini716 – 756CytoplasmicSequence analysisAdd BLAST41
Topological domaini757 – 771ExtracellularSequence analysisAdd BLAST15
Transmembranei772 – 792HelicalSequence analysisAdd BLAST21
Topological domaini793CytoplasmicSequence analysis1
Transmembranei794 – 814HelicalSequence analysisAdd BLAST21
Topological domaini815 – 1231ExtracellularSequence analysisAdd BLAST417
Transmembranei1232 – 1252HelicalSequence analysisAdd BLAST21
Topological domaini1253 – 1254CytoplasmicSequence analysis2

GO - Cellular componenti

Keywords - Cellular componenti

Capsid protein, Host cell membrane, Host cytoplasm, Host membrane, Host nucleus, Membrane, T=4 icosahedral capsid protein, Virion

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00000412911 – 270Capsid proteinAdd BLAST270
ChainiPRO_0000234325271 – 756Precursor of protein E3/E2Add BLAST486
ChainiPRO_0000041292271 – 334Assembly protein E3Add BLAST64
ChainiPRO_0000041293335 – 756Spike glycoprotein E2Add BLAST422
ChainiPRO_0000041294757 – 8166K proteinAdd BLAST60
ChainiPRO_0000041295817 – 1254Spike glycoprotein E1Add BLAST438

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the PTM / Processing":/help/ptm_processing_section section describes the positions of cysteine residues participating in disulfide bonds.<p><a href='/help/disulfid' target='_top'>More...</a></p>Disulfide bondi122 ↔ 137By similarity
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section specifies the position and type of each covalently attached glycan group (mono-, di-, or polysaccharide).<p><a href='/help/carbohyd' target='_top'>More...</a></p>Glycosylationi281N-linked (GlcNAc...) asparagine; by hostSequence analysis1
Glycosylationi328N-linked (GlcNAc...) asparagine; by hostSequence analysis1
Glycosylationi534N-linked (GlcNAc...) asparagine; by hostSequence analysis1
Glycosylationi596N-linked (GlcNAc...) asparagine; by hostSequence analysis1
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section specifies the position(s) and the type of covalently attached lipid group(s).<p><a href='/help/lipid' target='_top'>More...</a></p>Lipidationi719S-palmitoyl cysteine; by hostSequence analysis1
Lipidationi729S-palmitoyl cysteine; by hostBy similarity1
Lipidationi749S-palmitoyl cysteine; by hostBy similarity1
Lipidationi750S-palmitoyl cysteine; by hostBy similarity1
Disulfide bondi865 ↔ 930By similarity
Disulfide bondi878 ↔ 910By similarity
Disulfide bondi879 ↔ 912By similarity
Disulfide bondi884 ↔ 894By similarity
Glycosylationi957N-linked (GlcNAc...) asparagine; by hostSequence analysis1
Disulfide bondi1075 ↔ 1087By similarity
Disulfide bondi1117 ↔ 1192By similarity
Disulfide bondi1122 ↔ 1196By similarity
Disulfide bondi1144 ↔ 1186By similarity
Lipidationi1249S-stearoyl cysteine; by hostBy similarity1

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

Structural polyprotein: Specific enzymatic cleavages in vivo yield mature proteins. Capsid protein is auto-cleaved during polyprotein translation, unmasking a signal peptide at the N-terminus of the precursor of E3/E2 (By similarity). The remaining polyprotein is then targeted to the host endoplasmic reticulum, where host signal peptidase cleaves it into pE2, 6K and E1 proteins. pE2 is further processed to mature E3 and E2 by host furin in trans-Golgi vesicle (By similarity).By similarity
Spike glycoprotein E2: Palmitoylated via thioester bonds. These palmitoylations may induce disruption of the C-terminus transmembrane. This would result in the reorientation of E2 C-terminus from lumenal to cytoplasmic side.By similarity
Spike glycoprotein E1: N-glycosylated.By similarity
Spike glycoprotein E2: N-glycosylated.By similarity
Assembly protein E3: N-glycosylated.By similarity
6K protein: Palmitoylated via thioester bonds.By similarity

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Sitei270 – 271Cleavage; by autolysisBy similarity2
Sitei334 – 335Cleavage; by host furinBy similarity2
Sitei756 – 757Cleavage; by host signal peptidaseBy similarity2
Sitei816 – 817Cleavage; by host signal peptidaseBy similarity2

Keywords - PTMi

Cleavage on pair of basic residues, Disulfide bond, Glycoprotein, Lipoprotein, Palmitate

Proteomic databases

PRoteomics IDEntifications database

More...
PRIDEi
P08491

PTM databases

SwissPalm database of S-palmitoylation events

More...
SwissPalmi
P08491

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

Capsid protein: Homodimer (By similarity). Homomultimer (Probable). Capsid protein: Interacts with host karyopherin KPNA4; this interaction allows the nuclear import of the viral capsid protein (By similarity). Precursor of protein E3/E2: The precursor of protein E3/E2 and E1 form a heterodimer shortly after synthesis (By similarity). Spike glycoprotein E1: The precursor of protein E3/E2 and E1 form a heterodimer shortly after synthesis (By similarity). Spike glycoprotein E1: Processing of the precursor of protein E3/E2 into E2 and E3 results in a heterodimer of the spike glycoproteins E2 and E1 (By similarity). Spike glycoprotein E2: Processing of the precursor of protein E3/E2 into E2 and E3 results in a heterodimer of the spike glycoproteins E2 and E1 (By similarity). Spike glycoprotein E1: Spike at virion surface are constituted of three E2-E1 heterodimers (By similarity). Spike glycoprotein E2: Spike at virion surface are constituted of three E2-E1 heterodimers (By similarity). Spike glycoprotein E1: After target cell attachment and endocytosis, E1 change conformation to form homotrimers (By similarity). 6K protein: Interacts with spike glycoprotein E1 (By similarity). Spike glycoprotein E1: Interacts with 6K protein (By similarity). 6K protein: Interacts with spike glycoprotein E2 (By similarity). Spike glycoprotein E2: Interacts with 6K protein (By similarity). Spike glycoprotein E2: Interacts with host MXRA8; this interaction mediates virus entry (By similarity).By similarityCurated

<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

3D structure databases

SWISS-MODEL Repository - a database of annotated 3D protein structure models

More...
SMRi
P08491

Database of comparative protein structure models

More...
ModBasei
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Domains and Repeats

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/family_and_domains_section">Family and Domains</a> section describes the position and type of a domain, which is defined as a specific combination of secondary structures organized into a characteristic three-dimensional structure or fold.<p><a href='/help/domain' target='_top'>More...</a></p>Domaini122 – 270Peptidase S3PROSITE-ProRule annotationAdd BLAST149

Region

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni1 – 116Intrinsically disordered, in contact with genomic RNA in nucleocapsidSequence analysisAdd BLAST116
Regioni43 – 77Host transcription inhibitionBy similarityAdd BLAST35
Regioni95 – 123Binding to the viral RNABy similarityAdd BLAST29
Regioni108 – 122Ribosome-bindingBy similarityAdd BLAST15
Regioni192 – 202Dimerization of the capsid proteinBy similarityAdd BLAST11
Regioni228 – 232Dimerization of the capsid proteinBy similarity5
Regioni271 – 282Functions as an uncleaved signal peptide for the precursor of protein E3/E2By similarityAdd BLAST12
Regioni729 – 749Transient transmembrane before p62-6K protein processingSequence analysisAdd BLAST21
Regioni900 – 917E1 fusion peptide loopBy similarityAdd BLAST18

Motif

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes a short (usually not more than 20 amino acids) conserved sequence motif of biological significance.<p><a href='/help/motif' target='_top'>More...</a></p>Motifi70 – 108Nuclear localization signalBy similarityAdd BLAST39
Motifi153 – 163Nuclear export signalBy similarityAdd BLAST11

<p>This subsection of the ‘Family and domains’ section provides general information on the biological role of a domain. The term ‘domain’ is intended here in its wide acceptation, it may be a structural domain, a transmembrane region or a functional domain. Several domains are described in this subsection.<p><a href='/help/domain_cc' target='_top'>More...</a></p>Domaini

Capsid protein: The very N-terminus also plays a role in the particle assembly process (By similarity). The N-terminus also contains a nuclear localization signal and a supra nuclear export signal (supraNES), which is an unusually strong NES that mediates host CRM1 binding in the absence of RanGTP and thus can bind CRM1, not only in the nucleus, but also in the cytoplasm (By similarity). The C-terminus functions as a protease during translation to cleave itself from the translating structural polyprotein (By similarity).By similarity
Structural polyprotein: As soon as the capsid protein has been autocleaved, an internal uncleaved signal peptide directs the remaining polyprotein to the endoplasmic reticulum.By similarity

Keywords - Domaini

Transmembrane, Transmembrane helix

Family and domain databases

Gene3D Structural and Functional Annotation of Protein Families

More...
Gene3Di
2.60.40.350, 1 hit
2.60.98.10, 3 hits

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR002548 Alpha_E1_glycop
IPR000936 Alpha_E2_glycop
IPR002533 Alpha_E3_glycop
IPR000336 Flavivir/Alphavir_Ig-like_sf
IPR036253 Glycoprot_cen/dimer_sf
IPR038055 Glycoprot_E_dimer_dom
IPR014756 Ig_E-set
IPR009003 Peptidase_S1_PA
IPR000930 Peptidase_S3

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF01589 Alpha_E1_glycop, 1 hit
PF00943 Alpha_E2_glycop, 1 hit
PF01563 Alpha_E3_glycop, 1 hit
PF00944 Peptidase_S3, 1 hit

Protein Motif fingerprint database; a protein domain database

More...
PRINTSi
PR00798 TOGAVIRIN

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF50494 SSF50494, 1 hit
SSF56983 SSF56983, 1 hit
SSF81296 SSF81296, 1 hit

PROSITE; a protein domain and family database

More...
PROSITEi
View protein in PROSITE
PS51690 ALPHAVIRUS_CP, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>.<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is in its mature form or if it represents the precursor.<p><a href='/help/sequence_processing' target='_top'>More...</a></p>Sequence processingi: The displayed sequence is further processed into a mature form.

P08491-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MNYIPTQTFY GRRWRPRPAF RPWQVSMQPT PTMVTPMLQA PDLQAQQMQQ
60 70 80 90 100
LISAVSALTT KQNVKAPKGQ RQKKQQKPKE KKENQKKKPT QKKKQQQKPK
110 120 130 140 150
PQAKKKKPGR RERMCMKIEN DCIFEVKLDG KVTGYACLVG DKVMKPAHVK
160 170 180 190 200
GTIDNPDLAK LTYKKSSKYD LECAQIPVHM KSDASKYTHE KPEGHYNWHH
210 220 230 240 250
GAVQYSGGRF TIPTGAGKPG DSGRPIFDNK GRVVAIVLGG ANEGARTALS
260 270 280 290 300
VVTWTKDMVT RVTPEGTEEW SAALMMCILA NTSFPCSSPP CYPCCYEKQP
310 320 330 340 350
EQTLRMLEDN VNRPGYYELL EASMTCRNRS RHRRSVTEHF NVYKATRPYL
360 370 380 390 400
AYCADCGDGY FCYSPVAIEK IRDEAPDGML KIQVSAQIGL DKAGTHAHTK
410 420 430 440 450
IRYMAGHDVQ ESKRDSLRVY TSAACSIHGT MGHFIVAHCP PGDYLKVSFE
460 470 480 490 500
DADSHVKACK VQYKHDPLPV GREKFVVRPH FGVELPCTSY QLTTAPTDEE
510 520 530 540 550
IDMHTPPDIP DRTLLSQTAG NVKITAGGRT IRYNCTCGRD NVGTTSTDKT
560 570 580 590 600
INTCKIDQCH AAVTSHDKWQ FTSPFVPRAD QTARRGKVHV PFPLTNVTCR
610 620 630 640 650
VPLARAPDVT YGKKEVTLRL HPDHPTLFSY RSLGAEPHPY EEWVDKFSER
660 670 680 690 700
IIPVTEEGIE YQWGNNPPVR LWAQLTTEGK PHGWPHEIIQ YYYGLYPAAT
710 720 730 740 750
IAAVSGASLM ALLTLAATCC MLATARRKCL TPYALTPGAV VPLTLGLLCC
760 770 780 790 800
APRANAASFA ETMAYLWDEN KTLFWMEFAA PAAALALLAC CIKSLICCCK
810 820 830 840 850
PFSFLVLLSL GASAKAYEHT ATIPNVVGFP YKAHIERNGF SPMTLQLEVV
860 870 880 890 900
ETSWEPTLNL EYITCEYKTV VPSPFIKCCG TSECSSKEQP DYQCKVYTGV
910 920 930 940 950
YPFMWGGAYC FCDSENTQLS EAYVDRSDVC KHDHASAYKA HTASLKATIR
960 970 980 990 1000
ISYGTINQTT EAFVNGEHAV NVGGSKFIFG PISTAWSPFD NKIVVYKDDV
1010 1020 1030 1040 1050
YNQDFPPYGS GQPGRFGDIQ SRTVESKDLY ANTALKLSRP SPGVVHVPYT
1060 1070 1080 1090 1100
PTPSGFKYWL KEKGSSLNTK APFGCKIKTN PVRAMDCAVG SIPVSMDIPD
1110 1120 1130 1140 1150
SAFTRVVDAP AVTDLSCQVV VCTHSSDFGG VATLSYKTDK PGKCAVHSHS
1160 1170 1180 1190 1200
NVATLQEATV DVKEDGKVTV HFSTASASPA FKVSVCDAKT TCTAACEPPK
1210 1220 1230 1240 1250
DHIVPYGASH NNQVFPDMSG TAMTWVQRLA SGLGGLALIA VVVLVLVTCI

TMRR
Length:1,254
Mass (Da):138,468
Last modified:September 26, 2001 - v3
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:iD3E5534919597E96
GO

Experimental Info

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Sequence’ section reports difference(s) between the canonical sequence (displayed by default in the entry) and the different sequence submissions merged in the entry. These various submissions may originate from different sequencing projects, different types of experiments, or different biological samples. Sequence conflicts are usually of unknown origin.<p><a href='/help/conflict' target='_top'>More...</a></p>Sequence conflicti376P → S in AAA47405 (PubMed:2849242).Curated1
Sequence conflicti854W → L AA sequence (PubMed:6087344).Curated1

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
K00046 Genomic RNA Translation: AAA47404.1
M23708 Genomic RNA Translation: AAA47405.1

Protein sequence database of the Protein Information Resource

More...
PIRi
A31833 VHWV48
G37264

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
K00046 Genomic RNA Translation: AAA47404.1
M23708 Genomic RNA Translation: AAA47405.1
PIRiA31833 VHWV48
G37264

3D structure databases

SMRiP08491
ModBaseiSearch...
MobiDBiSearch...

Protein family/group databases

TCDBi1.G.4.1.2 the viral pore-forming membrane fusion protein-4 (vmfp4) family

PTM databases

SwissPalmiP08491

Proteomic databases

PRIDEiP08491

Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Family and domain databases

Gene3Di2.60.40.350, 1 hit
2.60.98.10, 3 hits
InterProiView protein in InterPro
IPR002548 Alpha_E1_glycop
IPR000936 Alpha_E2_glycop
IPR002533 Alpha_E3_glycop
IPR000336 Flavivir/Alphavir_Ig-like_sf
IPR036253 Glycoprot_cen/dimer_sf
IPR038055 Glycoprot_E_dimer_dom
IPR014756 Ig_E-set
IPR009003 Peptidase_S1_PA
IPR000930 Peptidase_S3
PfamiView protein in Pfam
PF01589 Alpha_E1_glycop, 1 hit
PF00943 Alpha_E2_glycop, 1 hit
PF01563 Alpha_E3_glycop, 1 hit
PF00944 Peptidase_S3, 1 hit
PRINTSiPR00798 TOGAVIRIN
SUPFAMiSSF50494 SSF50494, 1 hit
SSF56983 SSF56983, 1 hit
SSF81296 SSF81296, 1 hit
PROSITEiView protein in PROSITE
PS51690 ALPHAVIRUS_CP, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiPOLS_RRVT
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: P08491
Secondary accession number(s): Q88613
, Q88614, Q88615, Q88616, Q88617, Q88728
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: August 1, 1988
Last sequence update: September 26, 2001
Last modified: May 8, 2019
This is version 133 of the entry and version 3 of the sequence. See complete history.
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programViral Protein Annotation Program

<p>This section contains any relevant information that doesn’t fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

Direct protein sequencing
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again