Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 185 (18 Sep 2019)
Sequence version 1 (01 Apr 1988)
Previous versions | rss
Help videoAdd a publicationFeedback
Protein

Endoplasmic reticulum chaperone BiP

Gene

Hspa5

Organism
Rattus norvegicus (Rat)
Status
Reviewed-Annotation score:

Annotation score:5 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at protein leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Endoplasmic reticulum chaperone that plays a key role in protein folding and quality control in the endoplasmic reticulum lumen (By similarity). Involved in the correct folding of proteins and degradation of misfolded proteins via its interaction with DNAJC10/ERdj5, probably to facilitate the release of DNAJC10/ERdj5 from its substrate (By similarity). Acts as a key repressor of the ERN1/IRE1-mediated unfolded protein response (UPR). In the unstressed endoplasmic reticulum, recruited by DNAJB9/ERdj4 to the luminal region of ERN1/IRE1, leading to disrupt the dimerization of ERN1/IRE1, thereby inactivating ERN1/IRE1. Accumulation of misfolded protein in the endoplasmic reticulum causes release of HSPA5/BiP from ERN1/IRE1, allowing homodimerization and subsequent activation of ERN1/IRE1 (By similarity). Plays an auxiliary role in post-translational transport of small presecretory proteins across endoplasmic reticulum (ER). May function as an allosteric modulator for SEC61 channel-forming translocon complex, likely cooperating with SEC62 to enable the productive insertion of these precursors into SEC61 channel. Appears to specifically regulate translocation of precursors having inhibitory residues in their mature region that weaken channel gating.By similarity

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes the catalytic activity of an enzyme, i.e. a chemical reaction that the enzyme catalyzes.<p><a href='/help/catalytic_activity' target='_top'>More...</a></p>Catalytic activityi

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes regulatory mechanisms for enzymes, transporters or microbial transcription factors, and reports the components which regulate (by activation or inhibition) the reaction.<p><a href='/help/activity_regulation' target='_top'>More...</a></p>Activity regulationi

The chaperone activity is regulated by ATP-induced allosteric coupling of the nucleotide-binding (NBD) and substrate-binding (SBD) domains (By similarity). In the ADP-bound and nucleotide-free (apo) states, the two domains have little interaction (By similarity). In contrast, in the ATP-bound state the two domains are tightly coupled, which results in drastically accelerated kinetics in both binding and release of polypeptide substrates (By similarity). J domain-containing co-chaperones (DNAJB9/ERdj4 or DNAJC10/ERdj5) stimulate the ATPase activity and are required for efficient substrate recognition by HSPA5/BiP. Homooligomerization inactivates participating HSPA5/BiP protomers and probably act as reservoirs to store HSPA5/BiP molecules when they are not needed by the cell (By similarity).By similarity

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes the interaction between a single amino acid and another chemical entity. Priority is given to the annotation of physiological ligands.<p><a href='/help/binding' target='_top'>More...</a></p>Binding sitei96ATPBy similarity1

Regions

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes a region in the protein which binds nucleotide phosphates. It always involves more than one amino acid and includes all residues involved in nucleotide-binding.<p><a href='/help/np_bind' target='_top'>More...</a></p>Nucleotide bindingi36 – 39ATPBy similarity4
Nucleotide bindingi227 – 229ATPBy similarity3
Nucleotide bindingi293 – 300ATPBy similarity8
Nucleotide bindingi364 – 367ATPBy similarity4

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionChaperone, Hydrolase
LigandATP-binding, Nucleotide-binding

Enzyme and pathway databases

Reactome - a knowledgebase of biological pathways and processes

More...
Reactomei
R-RNO-3371453 Regulation of HSF1-mediated heat shock response
R-RNO-983170 Antigen Presentation: Folding, assembly and peptide loading of class I MHC

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Endoplasmic reticulum chaperone BiPBy similarity (EC:3.6.4.10By similarity)
Alternative name(s):
78 kDa glucose-regulated proteinBy similarity
Short name:
GRP-78By similarity
Binding-immunoglobulin proteinBy similarity
Short name:
BiPBy similarity
Heat shock protein 70 family protein 5By similarity
Short name:
HSP70 family protein 5By similarity
Heat shock protein family A member 5By similarity
Immunoglobulin heavy chain-binding proteinBy similarity
Steroidogenesis-activator polypeptide1 Publication
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:Hspa5Imported
Synonyms:Grp78By similarity
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiRattus norvegicus (Rat)
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri10116 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresGliresRodentiaMyomorphaMuroideaMuridaeMurinaeRattus
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
  • UP000002494 <p>A UniProt <a href="http://www.uniprot.org/manual/proteomes_manual">proteome</a> can consist of several components. <br></br>The component name refers to the genomic component encoding a set of proteins.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Chromosome 3

Organism-specific databases

Rat genome database

More...
RGDi
2843 Hspa5

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte & Seán O’Donoghue; Source: COMPARTMENTS

Keywords - Cellular componenti

Endoplasmic reticulum

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section denotes the presence of an N-terminal signal peptide.<p><a href='/help/signal' target='_top'>More...</a></p>Signal peptidei1 – 18By similarityAdd BLAST18
<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_000001356919 – 654Endoplasmic reticulum chaperone BiPAdd BLAST636

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei86PhosphoserineCombined sources1
Modified residuei125N6-acetyllysineBy similarity1
Modified residuei160Nitrated tyrosineBy similarity1
Modified residuei213N6-acetyllysineBy similarity1
Modified residuei271N6-acetyllysineBy similarity1
Modified residuei326N6-acetyllysineBy similarity1
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section describes <strong>covalent linkages</strong> of various types formed <strong>between two proteins (interchain cross-links)</strong> or <strong>between two parts of the same protein (intrachain cross-links)</strong>, except the disulfide bonds that are annotated in the <a href="http://www.uniprot.org/manual/disulfid">'Disulfide bond'</a> subsection.<p><a href='/help/crosslnk' target='_top'>More...</a></p>Cross-linki352Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in SUMO2)By similarity
Modified residuei353N6-acetyllysine; alternateBy similarity1
Cross-linki353Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in SUMO1); alternateBy similarity
Modified residuei447N6-succinyllysineBy similarity1
Modified residuei492Omega-N-methylarginineBy similarity1
Modified residuei518O-AMP-threonine; alternateBy similarity1
Modified residuei518Phosphothreonine; alternateBy similarity1
Modified residuei585N6,N6,N6-trimethyllysine; by METTL21A; in vitroBy similarity1
Modified residuei585N6,N6-dimethyllysine; alternateBy similarity1
Modified residuei585N6-methyllysine; alternateBy similarity1
Modified residuei591N6-methyllysineBy similarity1
Modified residuei643PhosphothreonineBy similarity1
Modified residuei648PhosphothreonineCombined sources1
Modified residuei649PhosphoserineCombined sources1

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

In unstressed cells, AMPylation at Thr-518 by FICD inactivates the chaperome activity: AMPylated form is locked in a relatively inert state and only weakly stimulated by J domain-containing proteins. In response to endoplasmic reticulum stress, de-AMPylation by the same protein, FICD, restores the chaperone activity.By similarity

Keywords - PTMi

Acetylation, Isopeptide bond, Methylation, Nitration, Phosphoprotein, Ubl conjugation

Proteomic databases

jPOST - Japan Proteome Standard Repository/Database

More...
jPOSTi
P06761

PaxDb, a database of protein abundance averages across all three domains of life

More...
PaxDbi
P06761

PRoteomics IDEntifications database

More...
PRIDEi
P06761

PTM databases

CarbonylDB database of protein carbonylation sites

More...
CarbonylDBi
P06761

iPTMnet integrated resource for PTMs in systems biology context

More...
iPTMneti
P06761

Comprehensive resource for the study of protein post-translational modifications (PTMs) in human, mouse and rat.

More...
PhosphoSitePlusi
P06761

SwissPalm database of S-palmitoylation events

More...
SwissPalmi
P06761

<p>This section provides information on the expression of a gene at the mRNA or protein level in cells or in tissues of multicellular organisms.<p><a href='/help/expression_section' target='_top'>More...</a></p>Expressioni

Gene expression databases

Bgee dataBase for Gene Expression Evolution

More...
Bgeei
ENSRNOG00000018294 Expressed in 10 organ(s), highest expression level in liver

Genevisible search portal to normalized and curated expression data from Genevestigator

More...
Genevisiblei
P06761 RN

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

Monomer and homooligomer; homooligomerization via the interdomain linker inactivates the chaperone activity and acts as a storage of HSPA5/BiP molecules (By similarity).

Interacts with DNAJC1 (via J domain) (By similarity).

Component of an EIF2 complex at least composed of CELF1/CUGBP1, CALR, CALR3, EIF2S1, EIF2S2, HSP90B1 and HSPA5 (By similarity).

Part of a large chaperone multiprotein complex comprising DNAJB11, HSP90B1, HSPA5, HYOU, PDIA2, PDIA4, PDIA6, PPIB, SDF2L1, UGT1A1 and very small amounts of ERP29, but not, or at very low levels, CALR nor CANX (PubMed:12475965).

Interacts with TMEM132A and TRIM21 (PubMed:12514190). May form a complex with ERLEC1, OS9, SEL1L and SYVN1 (By similarity).

Interacts with DNAJC10 (By similarity).

Interacts with DNAJB9/ERdj4; leading to recruit HSPA5/BiP to ERN1/IRE1 (By similarity).

Interacts with ERN1/IRE1; interaction takes place following interaction with DNAJB9/ERdj4 and leads to inactivate ERN1/IRE1 (By similarity).

Interacts with MX1 (By similarity).

Interacts with METTL23 (By similarity).

Interacts with CEMIP; the interaction induces calcium leakage from the endoplasmic reticulum and cell migration (By similarity).

Interacts with PCSK4 form; the interaction takes place in the endoplasmic reticulum (By similarity).

Interacts with CIPC (By similarity).

Interacts with CCDC88B (via C-terminus); the interaction opposes ERN1-mediated JNK activation, protecting against apoptosis (By similarity).

Interacts with INPP5K; necessary for INPP5K localization at the endoplasmic reticulum (By similarity).

Interacts with MANF; the interaction is direct (By similarity).

Interacts with LOXL2; leading to activate the ERN1/IRE1-XBP1 pathway of the unfolded protein response (By similarity).

Interacts with CLU under stressed condition; interaction increases CLU protein stability; facilitates its retrotranslocation and redistribution to the mitochondria; cooperatively suppress stress-induced apoptosis by stabilizing mitochondrial membrane integrity (By similarity).

Interacts with CCDC47 (By similarity).

By similarity2 Publications

<p>This subsection of the '<a href="http://www.uniprot.org/help/interaction_section%27">Interaction</a> section provides information about binary protein-protein interactions. The data presented in this section are a quality-filtered subset of binary interactions automatically derived from the <a href="http://www.ebi.ac.uk/intact/">IntAct database</a>. It is updated on a monthly basis. Each binary interaction is displayed on a separate line.<p><a href='/help/binary_interactions' target='_top'>More...</a></p>Binary interactionsi

GO - Molecular functioni

Protein-protein interaction databases

The Biological General Repository for Interaction Datasets (BioGrid)

More...
BioGridi
247646, 9 interactors

CORUM comprehensive resource of mammalian protein complexes

More...
CORUMi
P06761

Protein interaction database and analysis system

More...
IntActi
P06761, 19 interactors

Molecular INTeraction database

More...
MINTi
P06761

STRING: functional protein association networks

More...
STRINGi
10116.ENSRNOP00000025064

<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

3D structure databases

SWISS-MODEL Repository - a database of annotated 3D protein structure models

More...
SMRi
P06761

Database of comparative protein structure models

More...
ModBasei
Search...

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Region

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni125 – 280Nucleotide-binding (NBD)By similarityAdd BLAST156
Regioni409 – 419Interdomain linkerBy similarityAdd BLAST11
Regioni420 – 500Substrate-binding (SBD)By similarityAdd BLAST81

Motif

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes a short (usually not more than 20 amino acids) conserved sequence motif of biological significance.<p><a href='/help/motif' target='_top'>More...</a></p>Motifi651 – 654Prevents secretion from ER4

<p>This subsection of the ‘Family and domains’ section provides general information on the biological role of a domain. The term ‘domain’ is intended here in its wide acceptation, it may be a structural domain, a transmembrane region or a functional domain. Several domains are described in this subsection.<p><a href='/help/domain_cc' target='_top'>More...</a></p>Domaini

The interdomain linker regulates the chaperone activity by mediating the formation of homooligomers. Homooligomers are formed by engagement of the interdomain linker of one HSPA5/BiP molecule as a typical substrate of an adjacent HSPA5/BiP molecule. HSPA5/BiP oligomerization inactivates participating HSPA5/BiP protomers. HSPA5/BiP oligomers probably act as reservoirs to store HSPA5/BiP molecules when they are not needed by the cell. When the levels of unfolded proteins rise, cells can rapidly break up these oligomers to make active monomers.By similarity

<p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Belongs to the heat shock protein 70 family.Curated

Keywords - Domaini

Signal

Phylogenomic databases

evolutionary genealogy of genes: Non-supervised Orthologous Groups

More...
eggNOGi
KOG0101 Eukaryota
COG0443 LUCA

Ensembl GeneTree

More...
GeneTreei
ENSGT00940000154787

The HOGENOM Database of Homologous Genes from Fully Sequenced Organisms

More...
HOGENOMi
HOG000228135

InParanoid: Eukaryotic Ortholog Groups

More...
InParanoidi
P06761

KEGG Orthology (KO)

More...
KOi
K09490

Identification of Orthologs from Complete Genome Data

More...
OMAi
CVGVMQK

Database of Orthologous Groups

More...
OrthoDBi
288077at2759

Database for complete collections of gene phylogenies

More...
PhylomeDBi
P06761

TreeFam database of animal gene trees

More...
TreeFami
TF105044

Family and domain databases

Conserved Domains Database

More...
CDDi
cd10241 HSPA5-like_NBD, 1 hit

Gene3D Structural and Functional Annotation of Protein Families

More...
Gene3Di
1.20.1270.10, 1 hit
2.60.34.10, 1 hit

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR042050 BIP_NBD
IPR018181 Heat_shock_70_CS
IPR029048 HSP70_C_sf
IPR029047 HSP70_peptide-bd_sf
IPR013126 Hsp_70_fam

The PANTHER Classification System

More...
PANTHERi
PTHR19375 PTHR19375, 1 hit

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF00012 HSP70, 1 hit

Protein Motif fingerprint database; a protein domain database

More...
PRINTSi
PR00301 HEATSHOCK70

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF100920 SSF100920, 1 hit
SSF100934 SSF100934, 1 hit

PROSITE; a protein domain and family database

More...
PROSITEi
View protein in PROSITE
PS00014 ER_TARGET, 1 hit
PS00297 HSP70_1, 1 hit
PS00329 HSP70_2, 1 hit
PS01036 HSP70_3, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is in its mature form or if it represents the precursor.<p><a href='/help/sequence_processing' target='_top'>More...</a></p>Sequence processingi: The displayed sequence is further processed into a mature form.

P06761-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MKFTVVAAAL LLLCAVRAEE EDKKEDVGTV VGIDLGTTYS CVGVFKNGRV
60 70 80 90 100
EIIANDQGNR ITPSYVAFTP EGERLIGDAA KNQLTSNPEN TVFDAKRLIG
110 120 130 140 150
RTWNDPSVQQ DIKFLPFKVV EKKTKPYIQV DIGGGQTKTF APEEISAMVL
160 170 180 190 200
TKMKETAEAY LGKKVTHAVV TVPAYFNDAQ RQATKDAGTI AGLNVMRIIN
210 220 230 240 250
EPTAAAIAYG LDKREGEKNI LVFDLGGGTF DVSLLTIDNG VFEVVATNGD
260 270 280 290 300
THLGGEDFDQ RVMEHFIKLY KKKTGKDVRK DNRAVQKLRR EVEKAKRALS
310 320 330 340 350
SQHQARIEIE SFFEGEDFSE TLTRAKFEEL NMDLFRSTMK PVQKVLEDSD
360 370 380 390 400
LKKSDIDEIV LVGGSTRIPK IQQLVKEFFN GKEPSRGINP DEAVAYGAAV
410 420 430 440 450
QAGVLSGDQD TGDLVLLDVC PLTLGIETVG GVMTKLIPRN TVVPTKKSQI
460 470 480 490 500
FSTASDNQPT VTIKVYEGER PLTKDNHLLG TFDLTGIPPA PRGVPQIEVT
510 520 530 540 550
FEIDVNGILR VTAEDKGTGN KNKITITNDQ NRLTPEEIER MVNDAEKFAE
560 570 580 590 600
EDKKLKERID TRNELESYAY SLKNQIGDKE KLGGKLSPED KETMEKAVEE
610 620 630 640 650
KIEWLESHQD ADIEDFKAKK KELEEIVQPI ISKLYGSGGP PPTGEEDTSE

KDEL
Length:654
Mass (Da):72,347
Last modified:April 1, 1988 - v1
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:i9D686C6484150108
GO

Experimental Info

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Sequence’ section reports difference(s) between the canonical sequence (displayed by default in the entry) and the different sequence submissions merged in the entry. These various submissions may originate from different sequencing projects, different types of experiments, or different biological samples. Sequence conflicts are usually of unknown origin.<p><a href='/help/conflict' target='_top'>More...</a></p>Sequence conflicti29T → M in AAA41277 (PubMed:3468506).Curated1
Sequence conflicti649S → D AA sequence (PubMed:3563495).Curated1
Sequence conflicti651K → KK AA sequence (PubMed:3563495).Curated1

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
M14050 mRNA Translation: AAA40817.1
BC062017 mRNA Translation: AAH62017.1
M14866 Genomic DNA Translation: AAA41277.1

Protein sequence database of the Protein Information Resource

More...
PIRi
A23948 HHRTGB

NCBI Reference Sequences

More...
RefSeqi
NP_037215.1, NM_013083.2

Genome annotation databases

Ensembl eukaryotic genome annotation project

More...
Ensembli
ENSRNOT00000025067; ENSRNOP00000025064; ENSRNOG00000018294

Database of genes from NCBI RefSeq genomes

More...
GeneIDi
25617

KEGG: Kyoto Encyclopedia of Genes and Genomes

More...
KEGGi
rno:25617

UCSC genome browser

More...
UCSCi
RGD:2843 rat

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
M14050 mRNA Translation: AAA40817.1
BC062017 mRNA Translation: AAH62017.1
M14866 Genomic DNA Translation: AAA41277.1
PIRiA23948 HHRTGB
RefSeqiNP_037215.1, NM_013083.2

3D structure databases

SMRiP06761
ModBaseiSearch...

Protein-protein interaction databases

BioGridi247646, 9 interactors
CORUMiP06761
IntActiP06761, 19 interactors
MINTiP06761
STRINGi10116.ENSRNOP00000025064

PTM databases

CarbonylDBiP06761
iPTMnetiP06761
PhosphoSitePlusiP06761
SwissPalmiP06761

Proteomic databases

jPOSTiP06761
PaxDbiP06761
PRIDEiP06761

Genome annotation databases

EnsembliENSRNOT00000025067; ENSRNOP00000025064; ENSRNOG00000018294
GeneIDi25617
KEGGirno:25617
UCSCiRGD:2843 rat

Organism-specific databases

Comparative Toxicogenomics Database

More...
CTDi
3309
RGDi2843 Hspa5

Phylogenomic databases

eggNOGiKOG0101 Eukaryota
COG0443 LUCA
GeneTreeiENSGT00940000154787
HOGENOMiHOG000228135
InParanoidiP06761
KOiK09490
OMAiCVGVMQK
OrthoDBi288077at2759
PhylomeDBiP06761
TreeFamiTF105044

Enzyme and pathway databases

ReactomeiR-RNO-3371453 Regulation of HSF1-mediated heat shock response
R-RNO-983170 Antigen Presentation: Folding, assembly and peptide loading of class I MHC

Miscellaneous databases

Protein Ontology

More...
PROi
PR:P06761

Gene expression databases

BgeeiENSRNOG00000018294 Expressed in 10 organ(s), highest expression level in liver
GenevisibleiP06761 RN

Family and domain databases

CDDicd10241 HSPA5-like_NBD, 1 hit
Gene3Di1.20.1270.10, 1 hit
2.60.34.10, 1 hit
InterProiView protein in InterPro
IPR042050 BIP_NBD
IPR018181 Heat_shock_70_CS
IPR029048 HSP70_C_sf
IPR029047 HSP70_peptide-bd_sf
IPR013126 Hsp_70_fam
PANTHERiPTHR19375 PTHR19375, 1 hit
PfamiView protein in Pfam
PF00012 HSP70, 1 hit
PRINTSiPR00301 HEATSHOCK70
SUPFAMiSSF100920 SSF100920, 1 hit
SSF100934 SSF100934, 1 hit
PROSITEiView protein in PROSITE
PS00014 ER_TARGET, 1 hit
PS00297 HSP70_1, 1 hit
PS00329 HSP70_2, 1 hit
PS01036 HSP70_3, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiBIP_RAT
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: P06761
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: January 1, 1988
Last sequence update: April 1, 1988
Last modified: September 18, 2019
This is version 185 of the entry and version 1 of the sequence. See complete history.
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

<p>This section contains any relevant information that doesn’t fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

Complete proteome, Direct protein sequencing, Reference proteome

Documents

  1. SIMILARITY comments
    Index of protein domains and families
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again