<p>An evidence describes the source of an annotation, e.g. an experiment that has been published in the scientific literature, an orthologous protein, a record from another database, etc.</p>
<p><a href="/manual/evidences">More...</a></p>
Your basket is currently empty. i
<p>When browsing through different UniProt proteins, you can use the 'basket' to save them, so that you can back to find or analyse them later.<p><a href='/help/basket' target='_top'>More...</a></p>
Select item(s) and click on "Add to basket" to create your own collection here (400 entries max)
<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the 'correct annotation' for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>-Experimental evidence at protein leveli
<p>This indicates the type of evidence that supports the existence of the protein. Note that the 'protein existence' evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>
Select a section on the left to see content.
<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni
Plays an important role in the elongation step of protein synthesis.
<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni
protein kinase activator activity Source: GO_Central
<p>Inferred from Biological aspect of Ancestor</p>
<p>A type of phylogenetic evidence whereby an aspect of a descendent is inferred through the characterization of an aspect of a ancestral gene.</p>
<p>More information in the <a href="http://geneontology.org/page/guide%2Dgo%2Devidence%2Dcodes#iba">GO evidence code guide</a></p>
Inferred from biological aspect of ancestori
structural constituent of ribosome Source: GO_Central
<p>Inferred from Direct Assay</p>
<p>Used to indicate a direct assay for the function, process or component indicated by the GO term.</p>
<p>More information in the <a href="http://geneontology.org/page/guide%2Dgo%2Devidence%2Dcodes#ida">GO evidence code guide</a></p>
Inferred from direct assayi
translation Source: UniProtKB
<p>Non-traceable Author Statement</p>
<p>Used for statements in the abstract, introduction or discussion of a paper that cannot be traced back to another publication.</p>
<p>More information in the <a href="http://geneontology.org/page/guide%2Dgo%2Devidence%2Dcodes#nas">GO evidence code guide</a></p>
Non-traceable author statementi
<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi
R-HSA-156827, L13a-mediated translational silencing of Ceruloplasmin expression R-HSA-156902, Peptide chain elongation R-HSA-1799339, SRP-dependent cotranslational protein targeting to membrane R-HSA-192823, Viral mRNA Translation R-HSA-2408557, Selenocysteine synthesis R-HSA-6791226, Major pathway of rRNA processing in the nucleolus and cytosol R-HSA-72689, Formation of a pool of free 40S subunits R-HSA-72706, GTP hydrolysis and joining of the 60S ribosomal subunit R-HSA-72764, Eukaryotic Translation Termination R-HSA-9010553, Regulation of expression of SLITs and ROBOs R-HSA-9633012, Response of EIF2AK4 (GCN2) to amino acid deficiency R-HSA-975956, Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) R-HSA-975957, Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC)
<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
60S acidic ribosomal protein P1
Alternative name(s):
Large ribosomal subunit protein P11 Publication
<p>Manually curated information that is based on statements in scientific articles for which there is no experimental support.</p>
<p><a href="/manual/evidences#ECO:0000303">More...</a></p>
Manual assertion based on opinion ini
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: 'Name', 'Synonyms', 'Ordered locus names' and 'ORF names'.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>Organismi
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the 'taxonomic identifier' or 'taxid'.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineagei
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
UP000005640
<p>A UniProt <a href="http://www.uniprot.org/manual/proteomes%5Fmanual">proteome</a> can consist of several components.<br></br>The component name refers to the genomic component encoding a set of proteins.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Chromosome 15
<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi
<p>This section provides information on the disease(s) and phenotype(s) associated with a protein.<p><a href='/help/pathology_and_biotech_section' target='_top'>More...</a></p>Pathology & Biotechi
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm%5Fprocessing%5Fsection">PTM / Processing</a> section indicates that the initiator methionine is cleaved from the mature protein.<p><a href='/help/init_met' target='_top'>More...</a></p>Initiator methioninei
RemovedCombined sources
<p>Manually validated information inferred from a combination of experimental and computational evidence.</p>
<p><a href="/manual/evidences#ECO:0000244">More...</a></p>
Manual assertion inferred from combination of experimental and computational evidencei
Cited for: ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, CLEAVAGE OF INITIATOR METHIONINE [LARGE SCALE ANALYSIS], IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
<p>This subsection of the 'PTM / Processing' section describes the extent of a polypeptide chain in the mature protein following processing or proteolytic cleavage.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_0000157686
<p>This subsection of the 'PTM / Processing' section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-101, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
1 Publication
<p>Manually curated information for which there is published experimental evidence.</p>
<p><a href="/manual/evidences#ECO:0000269">More...</a></p>
Manual assertion based on experiment ini
<p>This section provides information on the expression of a gene at the mRNA or protein level in cells or in tissues of multicellular organisms.<p><a href='/help/expression_section' target='_top'>More...</a></p>Expressioni
<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni
<p>This subsection of the <a href="http://www.uniprot.org/help/interaction%5Fsection">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function%5Fsection">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei
Heterodimer with RPLP2 at the lateral ribosomal stalk of the large ribosomal subunit.
<p>This subsection of the '<a href="http://www.uniprot.org/help/interaction%5Fsection">Interaction</a>' section provides information about binary protein-protein interactions. The data presented in this section are a quality-filtered subset of binary interactions automatically derived from the <a href="https://www.ebi.ac.uk/intact/">IntAct database</a>. It is updated at every <a href="http://www.uniprot.org/help/synchronization">UniProt release</a>.<p><a href='/help/binary_interactions' target='_top'>More...</a></p>Binary interactionsi
<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei
Secondary structure
Legend: HelixTurnBeta strandPDB Structure known for this area
<p>This subsection of the <a href="http://www.uniprot.org/help/structure%5Fsection">'Structure'</a> section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi
<p>This subsection of the <a href="http://www.uniprot.org/help/structure%5Fsection">'Structure'</a> section is used to indicate the positions of experimentally determined hydrogen-bonded turns within the protein sequence. These elements correspond to the DSSP secondary structure code 'T'.<p><a href='/help/turn' target='_top'>More...</a></p>Turni
<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi
<p>This subsection of the 'Family and domains' section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi
<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence%5Flength">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequences (2+)i
<p>This subsection of the <a href="http://www.uniprot.org/help/sequences%5Fsection">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical%5Fand%5Fisoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.
<p>This subsection of the <a href="http://www.uniprot.org/help/sequences%5Fsection">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical%5Fand%5Fisoforms">canonical sequence</a> displayed by default in the entry is in its mature form or if it represents the precursor.<p><a href='/help/sequence_processing' target='_top'>More...</a></p>Sequence processingi: The displayed sequence is further processed into a mature form.
This entry describes 2
<p>This subsection of the 'Sequence' section lists the alternative protein sequences (isoforms) that can be generated from the same gene by a single or by the combination of up to four biological events (alternative promoter usage, alternative splicing, alternative initiation and ribosomal frameshifting). Additionally, this section gives relevant information on each alternative protein isoform. This section is only present in reviewed entries, i.e. in UniProtKB/Swiss-Prot.<p><a href='/help/alternative_products' target='_top'>More...</a></p> isoformsi produced by alternative splicing. AlignAdd to basketAdded to basket
This entry has 2 described isoforms and 1 potential isoform that is computationally mapped.Show allAlign All
This isoform has been chosen as the
<div>
<p><b>What is the canonical sequence?</b><p><a href='/help/canonical_and_isoforms' target='_top'>More...</a></p>canonicali sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.
<p>The checksum is a form of redundancy check that is calculated
from the sequence. It is useful for tracking sequence updates.</p>
<p>It should be noted that while, in theory, two different sequences could
have the same checksum value, the likelihood that this would happen
is extremely low.</p>
<p>However UniProtKB may contain entries with identical sequences in case
of multiple genes (paralogs).</p>
<p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64)
using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1.
The algorithm is described in the ISO 3309 standard.
</p>
<p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br />
<strong>Cyclic redundancy and other checksums</strong><br />
<a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p>
Checksum:i4C282AB8DCA079C8
<p>In eukaryotic reference proteomes, unreviewed entries that are likely to belong to the same gene are computationally mapped, based on gene identifiers from Ensembl, EnsemblGenomes and model organism databases.<p><a href='/help/gene_centric_isoform_mapping' target='_top'>More...</a></p>Computationally mapped potential isoform sequencesi
<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the 'correct annotation' for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
Alternative sequence
Feature key
Position(s)
DescriptionActions
Graphical view
Length
<p>This subsection of the 'Sequence' section describes the sequence of naturally occurring alternative protein isoform(s). The changes in the amino acid sequence may be due to alternative splicing, alternative promoter usage, alternative initiation, or ribosomal frameshifting.<p><a href='/help/var_seq' target='_top'>More...</a></p>Alternative sequenceiVSP_045244
<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi
<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi
Sequence databases
Select the link destinations: EMBLi GenBanki DDBJi
R-HSA-156827, L13a-mediated translational silencing of Ceruloplasmin expression R-HSA-156902, Peptide chain elongation R-HSA-1799339, SRP-dependent cotranslational protein targeting to membrane R-HSA-192823, Viral mRNA Translation R-HSA-2408557, Selenocysteine synthesis R-HSA-6791226, Major pathway of rRNA processing in the nucleolus and cytosol R-HSA-72689, Formation of a pool of free 40S subunits R-HSA-72706, GTP hydrolysis and joining of the 60S ribosomal subunit R-HSA-72764, Eukaryotic Translation Termination R-HSA-9010553, Regulation of expression of SLITs and ROBOs R-HSA-9633012, Response of EIF2AK4 (GCN2) to amino acid deficiency R-HSA-975956, Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) R-HSA-975957, Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC)
<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi
<p>This subsection of the 'Entry information' section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry namei
RLA1_HUMAN
<p>This subsection of the 'Entry information' section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called 'Primary (citable) accession number'.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>Accessioni
<p>This subsection of the 'Entry information' section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification ('Last modified'). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical%5Fand%5Fisoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyi
Integrated into UniProtKB/Swiss-Prot:
November 1, 1988
Last sequence update:
November 1, 1988
Last modified:
December 2, 2020
This is version 213 of the entry and version 1 of the sequence. See complete history.
<p>This subsection of the 'Entry information' section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusi
Any medical or genetic information present in this entry is provided for research, educational and informational purposes only. It is not in any way intended to be used as a substitute for professional medical advice, diagnosis, treatment or care.
<p>This section contains any relevant information that doesn't fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi
We'd like to inform you that we have updated our Privacy Notice to comply
with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.