Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Due to a server migration, the UniProt 'ID mapping', 'Peptide search' and 'community bibliography submission' tools will not be available on the 19th April 2021 during the morning (EST).
Entry version 107 (02 Dec 2020)
Sequence version 1 (21 Jul 1986)
Previous versions | rss
Add a publicationFeedback
Protein

Hemagglutinin

Gene

HA

Organism
Influenza B virus (strain B/Oregon/5/1980)
Status
Reviewed-Annotation score:

Annotation score:4 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the 'correct annotation' for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Protein inferred from homologyi <p>This indicates the type of evidence that supports the existence of the protein. Note that the 'protein existence' evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Binds to sialic acid-containing receptors on the cell surface, bringing about the attachment of the virus particle to the cell. Plays a major role in the determination of host range restriction and virulence. Class I viral fusion protein. Responsible for penetration of the virus into the cell cytoplasm by mediating the fusion of the membrane of the endocytosed virus particle with the endosomal membrane. Low pH in endosomes induce an irreversible conformational change in HA2, releasing the fusion hydrophobic peptide. Several trimers are required to form a competent fusion pore.UniRule annotation

Miscellaneous

Major glycoprotein, comprises over 80% of the envelope proteins present in virus particle.
The extent of infection into host organism is determined by HA. Influenza viruses bud from the apical surface of polarized epithelial cells (e.g. bronchial epithelial cells) into lumen of lungs and are therefore usually pneumotropic. The reason is that HA is cleaved by tryptase clara which is restricted to lungs. However, HAs of H5 and H7 pantropic avian viruses subtypes can be cleaved by furin and subtilisin-type enzymes, allowing the virus to grow in other organs than lungs.
The influenza B genome consist of 8 RNA segments. Genetic variation of hemagglutinin and/or neuraminidase genes results in the emergence of new influenza strains. The mechanism of variation can be the result of point mutations or the result of genetic reassortment between segments of two different strains.Curated

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionHemagglutinin
Biological processFusion of virus membrane with host endosomal membrane, Fusion of virus membrane with host membrane, Host-virus interaction, Viral attachment to host cell, Viral penetration into host cytoplasm, Virus endocytosis by host, Virus entry into host cell

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
HemagglutininUniRule annotation
Cleaved into the following 2 chains:
Hemagglutinin HA1 chainUniRule annotation
Hemagglutinin HA2 chainUniRule annotation
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: 'Name', 'Synonyms', 'Ordered locus names' and 'ORF names'.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:HAUniRule annotation
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiInfluenza B virus (strain B/Oregon/5/1980)
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the 'taxonomic identifier' or 'taxid'.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri11541 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiVirusesRiboviriaOrthornaviraeNegarnaviricotaPolyploviricotinaInsthoviricetesArticulaviralesOrthomyxoviridaeBetainfluenzavirus
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section only exists in viral entries and indicates the host(s) either as a specific organism or taxonomic group of organisms that are susceptible to be infected by a virus.<p><a href='/help/virus_host' target='_top'>More...</a></p>Virus hostiHomo sapiens (Human) [TaxID: 9606]

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Topology

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/subcellular%5Flocation%5Fsection">'Subcellular location'</a> section describes the subcellular compartment where each non-membrane region of a membrane-spanning protein is found.<p><a href='/help/topo_dom' target='_top'>More...</a></p>Topological domaini16 – 551ExtracellularUniRule annotationAdd BLAST536
<p>This subsection of the <a href="http://www.uniprot.org/help/subcellular%5Flocation%5Fsection">'Subcellular location'</a> section describes the extent of a membrane-spanning region of the protein. It denotes the presence of both alpha-helical transmembrane regions and the membrane spanning regions of beta-barrel transmembrane proteins.<p><a href='/help/transmem' target='_top'>More...</a></p>Transmembranei552 – 572HelicalUniRule annotationAdd BLAST21
Topological domaini573 – 583CytoplasmicUniRule annotationAdd BLAST11

Keywords - Cellular componenti

Host cell membrane, Host membrane, Membrane, Viral envelope protein, Virion

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the 'PTM / Processing' section denotes the presence of an N-terminal signal peptide.<p><a href='/help/signal' target='_top'>More...</a></p>Signal peptidei1 – 15UniRule annotationAdd BLAST15
<p>This subsection of the 'PTM / Processing' section describes the extent of a polypeptide chain in the mature protein following processing or proteolytic cleavage.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_000044054816 – 583HemagglutininUniRule annotationAdd BLAST568
ChainiPRO_000003912216 – 359Hemagglutinin HA1 chainUniRule annotationAdd BLAST344
ChainiPRO_0000039123361 – 583Hemagglutinin HA2 chainUniRule annotationAdd BLAST223

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the PTM / Processing":/help/ptm_processing_section section describes the positions of cysteine residues participating in disulfide bonds.<p><a href='/help/disulfid' target='_top'>More...</a></p>Disulfide bondi19 ↔ 497Interchain (between HA1 and HA2 chains)UniRule annotation
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm%5Fprocessing%5Fsection">PTM / Processing</a> section specifies the position and type of each covalently attached glycan group (mono-, di-, or polysaccharide).<p><a href='/help/carbohyd' target='_top'>More...</a></p>Glycosylationi40N-linked (GlcNAc...) asparagine; by hostUniRule annotation1
Glycosylationi74N-linked (GlcNAc...) asparagine; by hostUniRule annotation1
Disulfide bondi75 ↔ 87UniRule annotation
Disulfide bondi109 ↔ 158UniRule annotation
Glycosylationi160N-linked (GlcNAc...) asparagine; by hostUniRule annotation1
Glycosylationi179N-linked (GlcNAc...) asparagine; by hostUniRule annotation1
Glycosylationi246N-linked (GlcNAc...) asparagine; by hostUniRule annotation1
Glycosylationi317N-linked (GlcNAc...) asparagine; by hostUniRule annotation1
Glycosylationi346N-linked (GlcNAc...) asparagine; by hostUniRule annotation1
Disulfide bondi504 ↔ 508UniRule annotation
Glycosylationi505N-linked (GlcNAc...) asparagine; by hostUniRule annotation1
Glycosylationi531N-linked (GlcNAc...) asparagine; by hostUniRule annotation1
Glycosylationi544N-linked (GlcNAc...) asparagine; by hostUniRule annotation1
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm%5Fprocessing%5Fsection">PTM / Processing</a> section specifies the position(s) and the type of covalently attached lipid group(s).<p><a href='/help/lipid' target='_top'>More...</a></p>Lipidationi579S-palmitoyl cysteine; by hostUniRule annotation1
Lipidationi582S-palmitoyl cysteine; by hostUniRule annotation1

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm%5Fprocessing%5Fsection">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

Palmitoylated.UniRule annotation
In natural infection, inactive HA is matured into HA1 and HA2 outside the cell by one or more trypsin-like, arginine-specific endoprotease secreted by the bronchial epithelial cells. One identified protease that may be involved in this process is secreted in lungs by Clara cells.UniRule annotation

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection describes interesting single amino acid sites on the sequence that are not defined in any other subsection. This subsection can be displayed in different sections ('Function', 'PTM / Processing', 'Pathology and Biotech') according to its content.<p><a href='/help/site' target='_top'>More...</a></p>Sitei360 – 361Cleavage; by hostUniRule annotation2

Keywords - PTMi

Disulfide bond, Glycoprotein, Lipoprotein, Palmitate

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction%5Fsection">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function%5Fsection">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

Homotrimer of disulfide-linked HA1-HA2.

UniRule annotation

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

<p>This subsection of the 'Family and domains' section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Belongs to the influenza viruses hemagglutinin family.UniRule annotation

Keywords - Domaini

Signal, Transmembrane, Transmembrane helix

Family and domain databases

Gene3D Structural and Functional Annotation of Protein Families

More...
Gene3Di
3.90.209.20, 1 hit

HAMAP database of protein families

More...
HAMAPi
MF_04072, INFV_HEMA, 1 hit

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR008980, Capsid_hemagglutn
IPR013828, Hemagglutn_HA1_a/b_dom_sf
IPR001364, Hemagglutn_influenz_A/B
IPR000386, Hemagglutn_influenz_B

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF00509, Hemagglutinin, 1 hit

Protein Motif fingerprint database; a protein domain database

More...
PRINTSi
PR00329, HEMAGGLUTN12
PR00331, HEMAGGLUTN2

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF49818, SSF49818, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence%5Flength">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences%5Fsection">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical%5Fand%5Fisoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences%5Fsection">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical%5Fand%5Fisoforms">canonical sequence</a> displayed by default in the entry is in its mature form or if it represents the precursor.<p><a href='/help/sequence_processing' target='_top'>More...</a></p>Sequence processingi: The displayed sequence is further processed into a mature form.

P03464-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MKAIIVLLMV VTSNADRICT GITSSNSPHV VKTATQGEVN VTGVIPLTTT
60 70 80 90 100
PTKSHFANLK GTKTRGKLCP NCLNCTDLDV ALGRPKCMGT IPSAKASILH
110 120 130 140 150
EVKPVTSGCF PIMHDRTKIR QLPNLLRGYE NIRLSTRNVI NAERAPGGPY
160 170 180 190 200
IIGTSGSCPN VTNGNGFFAT MAWAVPKDNK TATNPLTVEV PYICTKGEDQ
210 220 230 240 250
ITVWGFHSDN EAQMVKLYGD SKPQKFTSSA NGVTTHYVSQ IGGFPNQTED
260 270 280 290 300
GGLPQSGRIV VDYMVQKPGK TGTIVYQRGV LLPQKVWCAS GRSKVIKGSL
310 320 330 340 350
PLIGEADCLH EKYGGLNKSK PYYTGEHAKA IGNCPIWVKT PLKLANGTKY
360 370 380 390 400
RPPAKLLKER GFFGAIAGFL EGGWEGMIAG WHGYTSHGAH GVAVAADLKS
410 420 430 440 450
TQEAINKITK NLNSLSELEV KNLQRLSGAM DELHNEILEL DEKVDDLRAD
460 470 480 490 500
TISSQIELAV LLSNEGIINS EDEHLLALER KLKKMLGPSA VDIGNGCFET
510 520 530 540 550
KHKCNQTCLD RIAAGTFNAG EFSLPTFDSL NITAASLNDD GLDNHTILLY
560 570 580
YSTAASSLAV TLMIAIFIVY MVSRDNVSCS ICL
Length:583
Mass (Da):62,912
Last modified:July 21, 1986 - v1
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:i5ED4BC775B6782E9
GO

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
K02713 Genomic RNA Translation: AAA43702.1

Protein sequence database of the Protein Information Resource

More...
PIRi
A04075, HMIVHO

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
K02713 Genomic RNA Translation: AAA43702.1
PIRiA04075, HMIVHO

3D structure databases

Database of comparative protein structure models

More...
ModBasei
Search...

SWISS-MODEL Interactive Workspace

More...
SWISS-MODEL-Workspacei
Submit a new modelling project...

Family and domain databases

Gene3Di3.90.209.20, 1 hit
HAMAPiMF_04072, INFV_HEMA, 1 hit
InterProiView protein in InterPro
IPR008980, Capsid_hemagglutn
IPR013828, Hemagglutn_HA1_a/b_dom_sf
IPR001364, Hemagglutn_influenz_A/B
IPR000386, Hemagglutn_influenz_B
PfamiView protein in Pfam
PF00509, Hemagglutinin, 1 hit
PRINTSiPR00329, HEMAGGLUTN12
PR00331, HEMAGGLUTN2
SUPFAMiSSF49818, SSF49818, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the 'Entry information' section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiHEMA_INBOR
<p>This subsection of the 'Entry information' section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called 'Primary (citable) accession number'.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: P03464
<p>This subsection of the 'Entry information' section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification ('Last modified'). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical%5Fand%5Fisoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: July 21, 1986
Last sequence update: July 21, 1986
Last modified: December 2, 2020
This is version 107 of the entry and version 1 of the sequence. See complete history.
<p>This subsection of the 'Entry information' section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programViral Protein Annotation Program

<p>This section contains any relevant information that doesn't fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Documents

  1. SIMILARITY comments
    Index of protein domains and families
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again