Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Protein

Histone H3.3C

Gene

h3f3c

Organism
Xenopus laevis (African clawed frog)
Status
Reviewed-Annotation score:

Annotation score:4 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at protein leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionDNA-binding

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Histone H3.3C
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:h3f3c
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiXenopus laevis (African clawed frog)
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri8355 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiAmphibiaBatrachiaAnuraPipoideaPipidaeXenopodinaeXenopusXenopus

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte; Source: COMPARTMENTS

Keywords - Cellular componenti

Chromosome, Nucleosome core, Nucleus

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section indicates that the initiator methionine is cleaved from the mature protein.<p><a href='/help/init_met' target='_top'>More...</a></p>Initiator methionineiRemovedCurated
<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00002212662 – 136Histone H3.3CAdd BLAST135

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei3Asymmetric dimethylarginine; by PRMT6By similarity1
Modified residuei4Phosphothreonine; by HASPINBy similarity1
Modified residuei5Allysine; alternateBy similarity1
Modified residuei5N6,N6,N6-trimethyllysine; alternateBy similarity1
Modified residuei5N6,N6-dimethyllysine; alternateBy similarity1
Modified residuei5N6-(2-hydroxyisobutyryl)lysine; alternateBy similarity1
Modified residuei5N6-acetyllysine; alternateBy similarity1
Modified residuei5N6-methyllysine; alternateBy similarity1
Modified residuei7Phosphothreonine; by PKCBy similarity1
Modified residuei10N6-(2-hydroxyisobutyryl)lysine; alternateBy similarity1
Modified residuei10N6-methylated lysineBy similarity1
Modified residuei11ADP-ribosylserine; alternateBy similarity1
Modified residuei11Phosphoserine; alternate; by AURKB, AURKC, RPS6KA3, RPS6KA4 and RPS6KA5By similarity1
Modified residuei12Phosphothreonine; by PKCBy similarity1
Modified residuei15N6-(2-hydroxyisobutyryl)lysine; alternateBy similarity1
Modified residuei15N6-acetyllysineBy similarity1
Modified residuei18Asymmetric dimethylarginineBy similarity1
Modified residuei19N6-(2-hydroxyisobutyryl)lysine; alternateBy similarity1
Modified residuei19N6-acetyllysine; alternateBy similarity1
Modified residuei19N6-butyryllysine; alternateBy similarity1
Modified residuei19N6-methylated lysine; alternateBy similarity1
Modified residuei24N6-(2-hydroxyisobutyryl)lysine; alternateBy similarity1
Modified residuei24N6-acetyllysineBy similarity1
Modified residuei24N6-butyryllysine; alternateBy similarity1
Modified residuei28N6-(2-hydroxyisobutyryl)lysine; alternateBy similarity1
Modified residuei28N6-acetyllysine; alternateBy similarity1
Modified residuei28N6-methylated lysine; alternateBy similarity1
Modified residuei37N6-(2-hydroxyisobutyryl)lysine; alternateBy similarity1
Modified residuei37N6-acetyllysine; alternateBy similarity1
Modified residuei37N6-methylated lysine; alternateBy similarity1
Modified residuei42PhosphotyrosineBy similarity1
Modified residuei57N6-(2-hydroxyisobutyryl)lysine; alternateBy similarity1
Modified residuei57N6-succinyllysine; alternateBy similarity1
Modified residuei58PhosphoserineBy similarity1
Modified residuei65N6-(2-hydroxyisobutyryl)lysine; alternateBy similarity1
Modified residuei65N6-methylated lysineBy similarity1
Modified residuei80N6-(2-hydroxyisobutyryl)lysine; alternateBy similarity1
Modified residuei80N6-methylated lysineBy similarity1
Modified residuei80N6-succinyllysine; alternateBy similarity1
Modified residuei81PhosphothreonineBy similarity1
Modified residuei116N6-acetyllysineBy similarity1
Modified residuei123N6-(2-hydroxyisobutyryl)lysine; alternateBy similarity1
Modified residuei123N6-acetyllysine; alternateBy similarity1
Modified residuei123N6-methylated lysine; alternateBy similarity1

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

Acetylation is generally linked to gene activation. Acetylation on Lys-19 (H3K18ac) and Lys-24 (H3K24ac) favors methylation at Arg-18 (H3R17me). Acetylation at Lys-123 (H3K122ac) by EP300/p300 plays a central role in chromatin structure: localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability (By similarity).By similarity
Asymmetric dimethylation at Arg-18 (H3R17me2a) is linked to gene activation. Asymmetric dimethylation at Arg-3 (H3R2me2a) by PRMT6 is linked to gene repression and is mutually exclusive with H3 Lys-5 methylation (H3K4me2 and H3K4me3). H3R2me2a is present at the 3' of genes regardless of their transcription state and is enriched on inactive promoters, while it is absent on active promoters (By similarity).By similarity
Methylation at Lys-5 (H3K4me) and Lys-80 (H3K79me) are linked to gene activation. Methylation at Lys-5 (H3K4me) facilitates subsequent acetylation of H3 and H4. Methylation at Lys-80 (H3K79me) is associated with DNA double-strand break (DSB) responses and is a specific target for TP53BP1. Methylation at Lys-10 (H3K9me) and Lys-28 (H3K27me) are linked to gene repression. Methylation at Lys-10 (H3K9me) is a specific target for HP1 proteins (CBX1, CBX3 and CBX5) and prevents subsequent phosphorylation at Ser-11 (H3S10ph) and acetylation of H3 and H4. Methylation at Lys-5 (H3K4me) and Lys-80 (H3K79me) require preliminary monoubiquitination of H2B at 'Lys-120' (By similarity).By similarity
Phosphorylated at Thr-4 (H3T3ph) by HASPIN during prophase and dephosphorylated during anaphase. Phosphorylation at Ser-11 (H3S10ph) by aurkb is crucial for chromosome condensation and cell-cycle progression during mitosis and meiosis. In addition phosphorylation at Ser-11 (H3S10ph) by rps6ka4 and rps6ka5 is important during interphase because it enables the transcription of genes following external stimulation, like mitogens, stress, growth factors or UV irradiation and result in the activation of genes, such as c-fos and c-jun. Phosphorylation at Ser-11 (H3S10ph), which is linked to gene activation, prevents methylation at Lys-10 (H3K9me) but facilitates acetylation of H3 and H4. Phosphorylation at Ser-11 (H3S10ph) by aurkb mediates the dissociation of HP1 proteins (cbx1, cbx3 and cbx5) from heterochromatin. Phosphorylation at Ser-11 (H3S10ph) is also an essential regulatory mechanism for neoplastic cell transformation. Phosphorylation at Thr-7 (H3T6ph) by prkcb is a specific tag for epigenetic transcriptional activation that prevents demethylation of Lys-5 (H3K4me) by lsd1/kdm1a. At centromeres, specifically phosphorylated at Thr-12 (H3T11ph) from prophase to early anaphase, by dapk3 and pkn1. Phosphorylation at Thr-12 (H3T11ph) by pkn1 is a specific tag for epigenetic transcriptional activation that promotes demethylation of Lys-10 (H3K9me) by kdm4c/jmjd2c. Phosphorylation at Tyr-42 (H3Y41ph) by jak2 promotes exclusion of cbx5 (HP1 alpha) from chromatin (By similarity).By similarity
Lysine deamination at Lys-5 (H3K4all) to form allysine only takes place on H3K4me3 and results in gene repression.By similarity
Butyrylation of histones marks active promoters and competes with histone acetylation. It is present during late spermatogenesis.By similarity
Succinylation at Lys-80 (H3K79succ) by KAT2A takes place with a maximum frequency around the transcription start sites of genes. It gives a specific tag for epigenetic transcription activation.By similarity

Keywords - PTMi

Acetylation, ADP-ribosylation, Hydroxylation, Methylation, Phosphoprotein, Ubl conjugation

Proteomic databases

PRoteomics IDEntifications database

More...
PRIDEi
P02302

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA.2 Publications

GO - Molecular functioni

Protein-protein interaction databases

Database of interacting proteins

More...
DIPi
DIP-39145N

Protein interaction database and analysis system

More...
IntActi
P02302, 1 interactor

<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

Secondary structure

1136
Legend: HelixTurnBeta strandPDB Structure known for this area
Show more details

3D structure databases

Protein Model Portal of the PSI-Nature Structural Biology Knowledgebase

More...
ProteinModelPortali
P02302

SWISS-MODEL Repository - a database of annotated 3D protein structure models

More...
SMRi
P02302

Database of comparative protein structure models

More...
ModBasei
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

Miscellaneous databases

Relative evolutionary importance of amino acids within a protein sequence

More...
EvolutionaryTracei
P02302

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

<p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Belongs to the histone H3 family.Curated

Phylogenomic databases

The HOVERGEN Database of Homologous Vertebrate Genes

More...
HOVERGENi
HBG001172

Family and domain databases

Gene3D Structural and Functional Annotation of Protein Families

More...
Gene3Di
1.10.20.10, 1 hit

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR009072 Histone-fold
IPR007125 Histone_H2A/H2B/H3
IPR000164 Histone_H3/CENP-A

The PANTHER Classification System

More...
PANTHERi
PTHR11426 PTHR11426, 1 hit

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF00125 Histone, 1 hit

Protein Motif fingerprint database; a protein domain database

More...
PRINTSi
PR00622 HISTONEH3

Simple Modular Architecture Research Tool; a protein domain database

More...
SMARTi
View protein in SMART
SM00428 H3, 1 hit

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF47113 SSF47113, 1 hit

PROSITE; a protein domain and family database

More...
PROSITEi
View protein in PROSITE
PS00322 HISTONE_H3_1, 1 hit
PS00959 HISTONE_H3_2, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>.<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is in its mature form or if it represents the precursor.<p><a href='/help/sequence_processing' target='_top'>More...</a></p>Sequence processingi: The displayed sequence is further processed into a mature form.

P02302-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MARTKQTARK STGGKAPRKQ LVTKAAKKCA PATGGVKKPH RYRPGTVALR
60 70 80 90 100
EIRRYQKSTE LLIRKLPFQR LVREIAQDFK TDLRFQRSAV MALQEASEAY
110 120 130
LVALFEDTNL CAIHAKRVTI MPKDIQLARR IRGERA
Length:136
Mass (Da):15,487
Last modified:January 23, 2007 - v2
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:iFE1B7E45DBBC7D95
GO

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
J00982 Genomic DNA No translation available.
J00984 Genomic DNA No translation available.

Protein sequence database of the Protein Information Resource

More...
PIRi
A02634 HSXL32

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
J00982 Genomic DNA No translation available.
J00984 Genomic DNA No translation available.
PIRiA02634 HSXL32

3D structure databases

Select the link destinations:

Protein Data Bank Europe

More...
PDBei

Protein Data Bank RCSB

More...
RCSB PDBi

Protein Data Bank Japan

More...
PDBji
Links Updated
PDB entryMethodResolution (Å)ChainPositionsPDBsum
1AOIX-ray2.80A/E21-136[»]
1M18X-ray2.45A/E2-136[»]
1M19X-ray2.30A/E2-136[»]
1M1AX-ray2.65A/E2-136[»]
6FQ8electron microscopy4.80A/E38-135[»]
6FTXelectron microscopy4.50E30-136[»]
ProteinModelPortaliP02302
SMRiP02302
ModBaseiSearch...
MobiDBiSearch...

Protein-protein interaction databases

DIPiDIP-39145N
IntActiP02302, 1 interactor

Proteomic databases

PRIDEiP02302

Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Phylogenomic databases

HOVERGENiHBG001172

Miscellaneous databases

EvolutionaryTraceiP02302

Family and domain databases

Gene3Di1.10.20.10, 1 hit
InterProiView protein in InterPro
IPR009072 Histone-fold
IPR007125 Histone_H2A/H2B/H3
IPR000164 Histone_H3/CENP-A
PANTHERiPTHR11426 PTHR11426, 1 hit
PfamiView protein in Pfam
PF00125 Histone, 1 hit
PRINTSiPR00622 HISTONEH3
SMARTiView protein in SMART
SM00428 H3, 1 hit
SUPFAMiSSF47113 SSF47113, 1 hit
PROSITEiView protein in PROSITE
PS00322 HISTONE_H3_1, 1 hit
PS00959 HISTONE_H3_2, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiH3C_XENLA
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: P02302
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: July 21, 1986
Last sequence update: January 23, 2007
Last modified: October 10, 2018
This is version 117 of the entry and version 2 of the sequence. See complete history.
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

<p>This section contains any relevant information that doesn’t fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

3D-structure

Documents

  1. PDB cross-references
    Index of Protein Data Bank (PDB) cross-references
  2. SIMILARITY comments
    Index of protein domains and families
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again