Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 91 (18 Sep 2019)
Sequence version 2 (01 Jun 2003)
Previous versions | rss
Help videoAdd a publicationFeedback
Protein

Fusion glycoprotein F0

Gene

F

Organism
Hendra virus (isolate Horse/Autralia/Hendra/1994)
Status
Reviewed-Annotation score:

Annotation score:4 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at protein leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Class I viral fusion protein. Under the current model, the protein has at least 3 conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and plasma cell membrane fusion, the heptad repeat (HR) regions assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and plasma cell membranes. Directs fusion of viral and cellular membranes leading to delivery of the nucleocapsid into the cytoplasm. This fusion is pH independent and occurs directly at the outer cell membrane. The trimer of F1-F2 (F protein) probably interacts with G at the virion surface. Upon G binding to its cellular receptor, the hydrophobic fusion peptide is unmasked and interacts with the cellular membrane, inducing the fusion between cell and virion membranes. Later in infection, F proteins expressed at the plasma membrane of infected cells could mediate fusion with adjacent cells to form syncytia, a cytopathic effect that could lead to tissue necrosis (By similarity).By similarity1 Publication

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Biological processFusion of virus membrane with host cell membrane, Fusion of virus membrane with host membrane, Viral penetration into host cytoplasm, Virus entry into host cell

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Fusion glycoprotein F0
Short name:
Protein F
Cleaved into the following 2 chains:
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:F
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiHendra virus (isolate Horse/Autralia/Hendra/1994)
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri928303 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiVirusesRiboviriaNegarnaviricotaHaploviricotinaMonjiviricetesMononegaviralesParamyxoviridaeOrthoparamyxovirinaeHenipavirus
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section only exists in viral entries and indicates the host(s) either as a specific organism or taxonomic group of organisms that are susceptible to be infected by a virus.<p><a href='/help/virus_host' target='_top'>More...</a></p>Virus hostiEquus caballus (Horse) [TaxID: 9796]
Homo sapiens (Human) [TaxID: 9606]
Pteropus alecto (Black flying fox) [TaxID: 9402]
Pteropus poliocephalus (Grey-headed flying fox) [TaxID: 9403]
Pteropus scapulatus (Little red flying fox) [TaxID: 94117]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
  • UP000008771 <p>A UniProt <a href="http://www.uniprot.org/manual/proteomes_manual">proteome</a> can consist of several components. <br></br>The component name refers to the genomic component encoding a set of proteins.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Genome

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Topology

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/subcellular_location_section">'Subcellular location'</a> section describes the subcellular compartment where each non-membrane region of a membrane-spanning protein is found.<p><a href='/help/topo_dom' target='_top'>More...</a></p>Topological domaini27 – 494ExtracellularSequence analysisAdd BLAST468
<p>This subsection of the <a href="http://www.uniprot.org/help/subcellular_location_section">'Subcellular location'</a> section describes the extent of a membrane-spanning region of the protein. It denotes the presence of both alpha-helical transmembrane regions and the membrane spanning regions of beta-barrel transmembrane proteins.<p><a href='/help/transmem' target='_top'>More...</a></p>Transmembranei495 – 515HelicalSequence analysisAdd BLAST21
Topological domaini516 – 546CytoplasmicSequence analysisAdd BLAST31

GO - Cellular componenti

Keywords - Cellular componenti

Host cell membrane, Host membrane, Membrane, Viral envelope protein, Virion

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section denotes the presence of an N-terminal signal peptide.<p><a href='/help/signal' target='_top'>More...</a></p>Signal peptidei1 – 26Sequence analysisAdd BLAST26
<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_000023600227 – 546Fusion glycoprotein F0Add BLAST520
ChainiPRO_000023600327 – 109Fusion glycoprotein F2CuratedAdd BLAST83
ChainiPRO_0000236004110 – 546Fusion glycoprotein F1CuratedAdd BLAST437

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section specifies the position and type of each covalently attached glycan group (mono-, di-, or polysaccharide).<p><a href='/help/carbohyd' target='_top'>More...</a></p>Glycosylationi64N-linked (GlcNAc...) asparagine; by hostSequence analysis1
Glycosylationi67N-linked (GlcNAc...) asparagine; by hostCombined sources1
<p>This subsection of the PTM / Processing":/help/ptm_processing_section section describes the positions of cysteine residues participating in disulfide bonds.<p><a href='/help/disulfid' target='_top'>More...</a></p>Disulfide bondi71 ↔ 192Interchain (between F2 and F1 chains)By similarity
Glycosylationi99N-linked (GlcNAc...) asparagine; by hostCombined sources1
Disulfide bondi331 ↔ 340By similarity
Disulfide bondi355 ↔ 363By similarity
Disulfide bondi387 ↔ 392By similarity
Disulfide bondi394 ↔ 417By similarity
Glycosylationi414N-linked (GlcNAc...) asparagine; by hostCombined sources1
Glycosylationi464N-linked (GlcNAc...) asparagine; by hostCombined sources1

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

The inactive precursor F0 is glycosylated and proteolytically cleaved into F1 and F2 to be functionally active. The cleavage is mediated by cellular proteases during the transport and maturation of the polypeptide (By similarity).By similarity

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection describes interesting single amino acid sites on the sequence that are not defined in any other subsection. This subsection can be displayed in different sections (‘Function’, ‘PTM / Processing’, ‘Pathology and Biotech’) according to its content.<p><a href='/help/site' target='_top'>More...</a></p>Sitei109 – 110Cleavage; by hostCurated2

Keywords - PTMi

Disulfide bond, Glycoprotein

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

Homotrimer of disulfide-linked F1-F2.

By similarity

<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

Secondary structure

1546
Legend: HelixTurnBeta strandPDB Structure known for this area
Show more details

3D structure databases

SWISS-MODEL Repository - a database of annotated 3D protein structure models

More...
SMRi
O89342

Database of comparative protein structure models

More...
ModBasei
Search...

Miscellaneous databases

Relative evolutionary importance of amino acids within a protein sequence

More...
EvolutionaryTracei
O89342

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Region

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni110 – 134Fusion peptideBy similarityAdd BLAST25

Coiled coil

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and domains’ section denotes the positions of regions of coiled coil within the protein.<p><a href='/help/coiled' target='_top'>More...</a></p>Coiled coili135 – 163Sequence analysisAdd BLAST29
Coiled coili459 – 484Sequence analysisAdd BLAST26

<p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Keywords - Domaini

Coiled coil, Signal, Transmembrane, Transmembrane helix

Family and domain databases

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR000776 Fusion_F0_Paramyxovir

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF00523 Fusion_gly, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is in its mature form or if it represents the precursor.<p><a href='/help/sequence_processing' target='_top'>More...</a></p>Sequence processingi: The displayed sequence is further processed into a mature form.

O89342-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MATQEVRLKC LLCGIIVLVL SLEGLGILHY EKLSKIGLVK GITRKYKIKS
60 70 80 90 100
NPLTKDIVIK MIPNVSNVSK CTGTVMENYK SRLTGILSPI KGAIELYNNN
110 120 130 140 150
THDLVGDVKL AGVVMAGIAI GIATAAQITA GVALYEAMKN ADNINKLKSS
160 170 180 190 200
IESTNEAVVK LQETAEKTVY VLTALQDYIN TNLVPTIDQI SCKQTELALD
210 220 230 240 250
LALSKYLSDL LFVFGPNLQD PVSNSMTIQA ISQAFGGNYE TLLRTLGYAT
260 270 280 290 300
EDFDDLLESD SIAGQIVYVD LSSYYIIVRV YFPILTEIQQ AYVQELLPVS
310 320 330 340 350
FNNDNSEWIS IVPNFVLIRN TLISNIEVKY CLITKKSVIC NQDYATPMTA
360 370 380 390 400
SVRECLTGST DKCPRELVVS SHVPRFALSG GVLFANCISV TCQCQTTGRA
410 420 430 440 450
ISQSGEQTLL MIDNTTCTTV VLGNIIISLG KYLGSINYNS ESIAVGPPVY
460 470 480 490 500
TDKVDISSQI SSMNQSLQQS KDYIKEAQKI LDTVNPSLIS MLSMIILYVL
510 520 530 540
SIAALCIGLI TFISFVIVEK KRGNYSRLDD RQVRPVSNGD LYYIGT
Length:546
Mass (Da):59,795
Last modified:June 1, 2003 - v2
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:iED80E2C158D6D0B6
GO

Experimental Info

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Sequence’ section reports difference(s) between the canonical sequence (displayed by default in the entry) and the different sequence submissions merged in the entry. These various submissions may originate from different sequencing projects, different types of experiments, or different biological samples. Sequence conflicts are usually of unknown origin.<p><a href='/help/conflict' target='_top'>More...</a></p>Sequence conflicti208 – 213SDLLFV → LICSC in AAB39505 (PubMed:8822631).Curated6
Sequence conflicti263A → T in AAB39505 (PubMed:8822631).Curated1
Sequence conflicti405G → R in AAB39505 (PubMed:8822631).Curated1
Sequence conflicti430G → P in AAB39505 (PubMed:8822631).Curated1
Sequence conflicti437 – 452NYNSE…PVYTD → KLQVLRALLLGHQSIQT in AAB39505 (PubMed:8822631).CuratedAdd BLAST16

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
U49404 Genomic RNA Translation: AAB39505.1
AF017149 Genomic RNA Translation: AAC83192.2

Protein sequence database of the Protein Information Resource

More...
PIRi
T08210

NCBI Reference Sequences

More...
RefSeqi
NP_047111.2, NC_001906.3

Genome annotation databases

Database of genes from NCBI RefSeq genomes

More...
GeneIDi
1446467

KEGG: Kyoto Encyclopedia of Genes and Genomes

More...
KEGGi
vg:1446467

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
U49404 Genomic RNA Translation: AAB39505.1
AF017149 Genomic RNA Translation: AAC83192.2
PIRiT08210
RefSeqiNP_047111.2, NC_001906.3

3D structure databases

Select the link destinations:

Protein Data Bank Europe

More...
PDBei

Protein Data Bank RCSB

More...
RCSB PDBi

Protein Data Bank Japan

More...
PDBji
Links Updated
PDB entryMethodResolution (Å)ChainPositionsPDBsum
1WP8X-ray2.20A/B/C137-178[»]
A/B/C453-485[»]
5EJBX-ray3.20A/B/C/D/E/F26-482[»]
SMRiO89342
ModBaseiSearch...

Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Genome annotation databases

GeneIDi1446467
KEGGivg:1446467

Miscellaneous databases

EvolutionaryTraceiO89342

Family and domain databases

InterProiView protein in InterPro
IPR000776 Fusion_F0_Paramyxovir
PfamiView protein in Pfam
PF00523 Fusion_gly, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiFUS_HENDH
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: O89342
Secondary accession number(s): Q66761
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: May 16, 2006
Last sequence update: June 1, 2003
Last modified: September 18, 2019
This is version 91 of the entry and version 2 of the sequence. See complete history.
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programViral Protein Annotation Program

<p>This section contains any relevant information that doesn’t fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

3D-structure, Complete proteome, Reference proteome

Documents

  1. PDB cross-references
    Index of Protein Data Bank (PDB) cross-references
  2. SIMILARITY comments
    Index of protein domains and families
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again