Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 107 (16 Oct 2019)
Sequence version 2 (01 May 1999)
Previous versions | rss
Help videoAdd a publicationFeedback
Protein

C-C chemokine receptor type 2

Gene

CCR2

Organism
Macaca mulatta (Rhesus macaque)
Status
Reviewed-Annotation score:

Annotation score:5 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at transcript leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Key functional receptor for CCL2 but can also bind CCL7 and CCL12 (By similarity). Its binding with CCL2 on monocytes and macrophages mediates chemotaxis and migration induction through the activation of the PI3K cascade, the small G protein Rac and lamellipodium protrusion (By similarity) Also acts as a receptor for the beta-defensin DEFB106A/DEFB106B (By similarity). Regulates the expression of T-cell inflammatory cytokines and T-cell differentiation, promoting the differentiation of T-cells into T-helper 17 cells (Th17) during inflammation (By similarity). Facilitates the export of mature thymocytes by enhancing directional movement of thymocytes to sphingosine-1-phosphate stimulation and up-regulation of S1P1R expression; signals through the JAK-STAT pathway to regulate FOXO1 activity leading to an increased expression of S1P1R (By similarity). Plays an important role in mediating peripheral nerve injury-induced neuropathic pain (By similarity). Increases NMDA-mediated synaptic transmission in both dopamine D1 and D2 receptor-containing neurons, which may be caused by MAPK/ERK-dependent phosphorylation of GRIN2B/NMDAR2B (By similarity). Mediates the recruitment of macrophages and monocytes to the injury site following brain injury (By similarity).By similarity

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionG-protein coupled receptor, Receptor, Transducer
Biological processInflammatory response

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
C-C chemokine receptor type 2
Short name:
C-C CKR-2
Short name:
CC-CKR-2
Short name:
CCR-2
Short name:
CCR2
Alternative name(s):
Monocyte chemoattractant protein 1 receptor
Short name:
MCP-1-R
CD_antigen: CD192
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:CCR2
Synonyms:CMKBR2
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiMacaca mulatta (Rhesus macaque)
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri9544 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresPrimatesHaplorrhiniCatarrhiniCercopithecidaeCercopithecinaeMacaca
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
  • UP000006718 <p>A UniProt <a href="http://www.uniprot.org/manual/proteomes_manual">proteome</a> can consist of several components. <br></br>The component name refers to the genomic component encoding a set of proteins.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Unplaced

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte & Seán O’Donoghue; Source: COMPARTMENTS

Topology

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/subcellular_location_section">'Subcellular location'</a> section describes the subcellular compartment where each non-membrane region of a membrane-spanning protein is found.<p><a href='/help/topo_dom' target='_top'>More...</a></p>Topological domaini1 – 42ExtracellularSequence analysisAdd BLAST42
<p>This subsection of the <a href="http://www.uniprot.org/help/subcellular_location_section">'Subcellular location'</a> section describes the extent of a membrane-spanning region of the protein. It denotes the presence of both alpha-helical transmembrane regions and the membrane spanning regions of beta-barrel transmembrane proteins.<p><a href='/help/transmem' target='_top'>More...</a></p>Transmembranei43 – 70Helical; Name=1Sequence analysisAdd BLAST28
Topological domaini71 – 80CytoplasmicSequence analysis10
Transmembranei81 – 100Helical; Name=2Sequence analysisAdd BLAST20
Topological domaini101 – 114ExtracellularSequence analysisAdd BLAST14
Transmembranei115 – 136Helical; Name=3Sequence analysisAdd BLAST22
Topological domaini137 – 153CytoplasmicSequence analysisAdd BLAST17
Transmembranei154 – 178Helical; Name=4Sequence analysisAdd BLAST25
Topological domaini179 – 206ExtracellularSequence analysisAdd BLAST28
Transmembranei207 – 226Helical; Name=5Sequence analysisAdd BLAST20
Topological domaini227 – 243CytoplasmicSequence analysisAdd BLAST17
Transmembranei244 – 268Helical; Name=6Sequence analysisAdd BLAST25
Topological domaini269 – 285ExtracellularSequence analysisAdd BLAST17
Transmembranei286 – 309Helical; Name=7Sequence analysisAdd BLAST24
Topological domaini310 – 360CytoplasmicSequence analysisAdd BLAST51

Keywords - Cellular componenti

Cell membrane, Membrane

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00000692331 – 360C-C chemokine receptor type 2Add BLAST360

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section specifies the position and type of each covalently attached glycan group (mono-, di-, or polysaccharide).<p><a href='/help/carbohyd' target='_top'>More...</a></p>Glycosylationi14N-linked (GlcNAc...) asparagineSequence analysis1
<p>This subsection of the ‘PTM / Processing’ section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei26SulfotyrosineBy similarity1
<p>This subsection of the PTM / Processing":/help/ptm_processing_section section describes the positions of cysteine residues participating in disulfide bonds.<p><a href='/help/disulfid' target='_top'>More...</a></p>Disulfide bondi113 ↔ 190PROSITE-ProRule annotation
Modified residuei139Phosphotyrosine; by JAK2By similarity1

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

N-glycosylated.By similarity
Sulfation increases the affinity for both monomeric and dimeric CCL2 with stronger binding to the monomeric form (By similarity). Binding of sulfated CCR2 to CCL2 promotes conversion of CCL2 from dimer to monomer (By similarity).By similarity

Keywords - PTMi

Disulfide bond, Glycoprotein, Phosphoprotein, Sulfation

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

Interacts with ARRB1 (By similarity).

Interacts (via extracellular N-terminal region) with beta-defensin DEFB106A/DEFB106B; this interaction may preferentially require specific tyrosine sulfation on CCR2 (By similarity).

Interacts with NUP85; the interaction is required for CCR2 clusters formation on the cell membrane and CCR2 signaling (By similarity).

By similarity

GO - Molecular functioni

<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

3D structure databases

SWISS-MODEL Repository - a database of annotated 3D protein structure models

More...
SMRi
O18793

Database of comparative protein structure models

More...
ModBasei
Search...

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

<p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Belongs to the G-protein coupled receptor 1 family.PROSITE-ProRule annotation

Keywords - Domaini

Transmembrane, Transmembrane helix

Phylogenomic databases

The HOGENOM Database of Homologous Genes from Fully Sequenced Organisms

More...
HOGENOMi
HOG000234122

InParanoid: Eukaryotic Ortholog Groups

More...
InParanoidi
O18793

KEGG Orthology (KO)

More...
KOi
K04177

Database of Orthologous Groups

More...
OrthoDBi
937138at2759

Family and domain databases

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR002237 Chemokine_CCR2
IPR000355 Chemokine_rcpt
IPR000276 GPCR_Rhodpsn
IPR017452 GPCR_Rhodpsn_7TM

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF00001 7tm_1, 1 hit

Protein Motif fingerprint database; a protein domain database

More...
PRINTSi
PR00657 CCCHEMOKINER
PR01107 CHEMOKINER2
PR00237 GPCRRHODOPSN

Simple Modular Architecture Research Tool; a protein domain database

More...
SMARTi
View protein in SMART
SM01381 7TM_GPCR_Srsx, 1 hit

PROSITE; a protein domain and family database

More...
PROSITEi
View protein in PROSITE
PS00237 G_PROTEIN_RECEP_F1_1, 1 hit
PS50262 G_PROTEIN_RECEP_F1_2, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequences (2)i

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

This entry describes 2 <p>This subsection of the ‘Sequence’ section lists the alternative protein sequences (isoforms) that can be generated from the same gene by a single or by the combination of up to four biological events (alternative promoter usage, alternative splicing, alternative initiation and ribosomal frameshifting). Additionally, this section gives relevant information on each alternative protein isoform.<p><a href='/help/alternative_products' target='_top'>More...</a></p> isoformsi produced by alternative splicing. AlignAdd to basket
Isoform B (identifier: O18793-1) [UniParc]FASTAAdd to basket

This isoform has been chosen as the <div> <p><b>What is the canonical sequence?</b><p><a href='/help/canonical_and_isoforms' target='_top'>More...</a></p>canonicali sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.

« Hide
        10         20         30         40         50
MLSTSRSRFI RNTNGSGEEV TTFFDYDYGA PCHKFDVKQI GAQLLPPLYS
60 70 80 90 100
LVFIFGFVGN MLVVLILINC KKLKSLTDIY LLNLAISDLL FLITLPLWAH
110 120 130 140 150
SAANEWVFGN AMCKLFTGLY HIGYLGGIFF IILLTIDRYL AIVHAVFALK
160 170 180 190 200
ARTVTFGVVT SVITWLVAVF ASVPGIIFTK CQEEDSVYIC GPYFPRGWNN
210 220 230 240 250
FHTIMRNILG LVLPLLIMVI CYSGILKTLL RCRNEKKRHR AVRLIFTIMI
260 270 280 290 300
VYFLFWTPYN IVILLNTFQE FFGLSNCEST RQLDQATQVT ETLGMTHCCI
310 320 330 340 350
NPIIYAFVGE KFRRYLSMFF RKYITKRFCK QCPVFYRETV DGVTSTNTPS
360
TAEQEVSVGL
Length:360
Mass (Da):41,140
Last modified:May 1, 1999 - v2
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:i4B2552BCE913FE9F
GO
Isoform A (identifier: O18793-2)
Sequence is not available
Length:
Mass (Da):

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
AF013958 mRNA Translation: AAD11572.1

NCBI Reference Sequences

More...
RefSeqi
NP_001027978.1, NM_001032806.1 [O18793-1]

Genome annotation databases

Database of genes from NCBI RefSeq genomes

More...
GeneIDi
574098

KEGG: Kyoto Encyclopedia of Genes and Genomes

More...
KEGGi
mcc:574098

Keywords - Coding sequence diversityi

Alternative splicing

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
AF013958 mRNA Translation: AAD11572.1
RefSeqiNP_001027978.1, NM_001032806.1 [O18793-1]

3D structure databases

SMRiO18793
ModBaseiSearch...

Protein family/group databases

Information system for G protein-coupled receptors (GPCRs)

More...
GPCRDBi
Search...

Genome annotation databases

GeneIDi574098
KEGGimcc:574098

Organism-specific databases

Comparative Toxicogenomics Database

More...
CTDi
729230

Phylogenomic databases

HOGENOMiHOG000234122
InParanoidiO18793
KOiK04177
OrthoDBi937138at2759

Family and domain databases

InterProiView protein in InterPro
IPR002237 Chemokine_CCR2
IPR000355 Chemokine_rcpt
IPR000276 GPCR_Rhodpsn
IPR017452 GPCR_Rhodpsn_7TM
PfamiView protein in Pfam
PF00001 7tm_1, 1 hit
PRINTSiPR00657 CCCHEMOKINER
PR01107 CHEMOKINER2
PR00237 GPCRRHODOPSN
SMARTiView protein in SMART
SM01381 7TM_GPCR_Srsx, 1 hit
PROSITEiView protein in PROSITE
PS00237 G_PROTEIN_RECEP_F1_1, 1 hit
PS50262 G_PROTEIN_RECEP_F1_2, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiCCR2_MACMU
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: O18793
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: April 27, 2001
Last sequence update: May 1, 1999
Last modified: October 16, 2019
This is version 107 of the entry and version 2 of the sequence. See complete history.
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

<p>This section contains any relevant information that doesn’t fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

Complete proteome, Reference proteome

Documents

  1. SIMILARITY comments
    Index of protein domains and families
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again