Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 27 (10 Apr 2019)
Sequence version 2 (15 Feb 2017)
Previous versions | rss
Other tutorials and videosHelp videoFeedback
Protein

Ribosome-associated molecular chaperone SSB1

Gene

SSB1

Organism
Chaetomium thermophilum (strain DSM 1495 / CBS 144.50 / IMI 039719)
Status
Reviewed-Annotation score:

Annotation score:5 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at protein leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Ribosome-bound, Hsp70-type chaperone that assists in the cotranslational folding of newly synthesized proteins in the cytosol. Stimulates folding by interacting with nascent chains, binding to short, largely hydrophobic sequences exposed by unfolded proteins, thereby stabilizing longer, more slowly translated, and aggregation-prone nascent polypeptides and domains that cannot fold stably until fully synthesized. The Hsp70-protein substrate interaction depends on ATP-binding and on allosteric regulation between the NBD and the SBD. The ATP-bound state is characterized by a fast exchange rate of substrate (low affinity state), while in the ADP-bound state exchange is much slower (high affinity state). During the Hsp70 cycle, the chaperone switches between the ATP-bound state (open conformation) and the ADP-bound state (closed conformation) by major conformational rearrangements involving mainly the lid domain. Ssb cooperates with a specific Hsp40/Hsp70 co-chaperone termed the ribosome-associated complex (RAC), which stimulates the ATPase activity of the ribosome-associated pool of Ssbs and switches it to the high affinity substrate binding state. Hsp110 chaperone SSE1 and FES1 act as nucleotide exchange factors that cause substrate release.By similarity

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes the catalytic activity of an enzyme, i.e. a chemical reaction that the enzyme catalyzes.<p><a href='/help/catalytic_activity' target='_top'>More...</a></p>Catalytic activityi

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Function’ section describes the interaction between a single amino acid and another chemical entity. Priority is given to the annotation of physiological ligands.<p><a href='/help/binding' target='_top'>More...</a></p>Binding sitei74ATPCombined sources1 Publication1
Binding sitei343ATP; via amide nitrogenCombined sources1 Publication1

Regions

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Function’ section describes a region in the protein which binds nucleotide phosphates. It always involves more than one amino acid and includes all residues involved in nucleotide-binding.<p><a href='/help/np_bind' target='_top'>More...</a></p>Nucleotide bindingi16 – 18ATPCombined sources1 Publication3
Nucleotide bindingi206 – 208ATPCombined sources1 Publication3
Nucleotide bindingi272 – 279ATPCombined sources1 Publication8

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionChaperone, Hydrolase
Biological processProtein biosynthesis
LigandATP-binding, Nucleotide-binding

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Ribosome-associated molecular chaperone SSB11 Publication (EC:3.6.4.10)
Alternative name(s):
Heat shock protein SSB1
Hsp70 chaperone Ssb
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:SSB11 Publication
ORF Names:CTHT_0058460
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiChaetomium thermophilum (strain DSM 1495 / CBS 144.50 / IMI 039719)
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri759272 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaFungiDikaryaAscomycotaPezizomycotinaSordariomycetesSordariomycetidaeSordarialesChaetomiaceaeChaetomium
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
  • UP000008066 <p>A UniProt <a href="http://www.uniprot.org/manual/proteomes_manual">proteome</a> can consist of several components. <br></br>The component name refers to the genomic component encoding a set of proteins.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Unassembled WGS sequence

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Extracellular region or secreted Cytosol Plasma membrane Cell wall Cytoskeleton Vacuole Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte & Seán O’Donoghue; Source: COMPARTMENTS

Keywords - Cellular componenti

Cytoplasm

<p>This section provides information on the disease(s) and phenotype(s) associated with a protein.<p><a href='/help/pathology_and_biotech_section' target='_top'>More...</a></p>Pathology & Biotechi

Mutagenesis

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/manual/pathology_and_biotech_section">'Pathology and Biotech'</a> section describes the effect of the experimental mutation of one or more amino acid(s) on the biological properties of the protein.<p><a href='/help/mutagen' target='_top'>More...</a></p>Mutagenesisi208T → A: Reduces ATPase activity. 1 Publication1

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00004389731 – 614Ribosome-associated molecular chaperone SSB1Add BLAST614

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

Binds to ribosomes. Binds close to the ribosomal tunnel exit via contacts with both ribosomal proteins and rRNA. Directly interacts with nascent polypeptides. This interaction is dependent on the ribosome-associated complex (RAC). Interacts with SSE1. Interacts with FES1.By similarity

GO - Molecular functioni

Protein-protein interaction databases

STRING: functional protein association networks

More...
STRINGi
209285.XP_006696166.1

<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

Secondary structure

1614
Legend: HelixTurnBeta strandPDB Structure known for this area
Show more details

3D structure databases

Select the link destinations:

Protein Data Bank Europe

More...
PDBei

Protein Data Bank RCSB

More...
RCSB PDBi

Protein Data Bank Japan

More...
PDBji
Links Updated
PDB entryMethodResolution (Å)ChainPositionsPDBsum
5TKYX-ray2.60A/B4-613[»]

SWISS-MODEL Repository - a database of annotated 3D protein structure models

More...
SMRi
G0SCU5

Database of comparative protein structure models

More...
ModBasei
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Region

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni1 – 392Nucleotide binding domain (NBD)1 PublicationAdd BLAST392
Regioni393 – 403Inter-domain linker1 PublicationAdd BLAST11
Regioni404 – 614Substrate binding domain (SBD)1 PublicationAdd BLAST211
Regioni517 – 613Lid domain (SBDalpha)1 PublicationAdd BLAST97

Motif

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes a short (usually not more than 20 amino acids) conserved sequence motif of biological significance.<p><a href='/help/motif' target='_top'>More...</a></p>Motifi575 – 583Nuclear export signal1 Publication9

Compositional bias

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes the position of regions of compositional bias within the protein and the particular amino acids that are over-represented within those regions.<p><a href='/help/compbias' target='_top'>More...</a></p>Compositional biasi396 – 399Poly-LeuSequence analysis4

<p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Phylogenomic databases

KEGG Orthology (KO)

More...
KOi
K03283

Database of Orthologous Groups

More...
OrthoDBi
288077at2759

Family and domain databases

Gene3D Structural and Functional Annotation of Protein Families

More...
Gene3Di
1.20.1270.10, 1 hit
2.60.34.10, 1 hit

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR018181 Heat_shock_70_CS
IPR029048 HSP70_C_sf
IPR029047 HSP70_peptide-bd_sf
IPR013126 Hsp_70_fam

The PANTHER Classification System

More...
PANTHERi
PTHR19375 PTHR19375, 1 hit

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF00012 HSP70, 1 hit

Protein Motif fingerprint database; a protein domain database

More...
PRINTSi
PR00301 HEATSHOCK70

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF100920 SSF100920, 1 hit
SSF100934 SSF100934, 1 hit

PROSITE; a protein domain and family database

More...
PROSITEi
View protein in PROSITE
PS00329 HSP70_2, 1 hit
PS01036 HSP70_3, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>.<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

G0SCU5-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MAEEVYDGAI GIDLGTTYSC VAVYEGTNVE IIANEQGNFT TPSFVSFTEN
60 70 80 90 100
ERLIGEAAKN QAAMNPANTI FDVKRLIGRR FDDPTVKKDM ESWPFKVVDD
110 120 130 140 150
NGNPKVEVQY LGQTHTFSPQ EISAMVLTKM KEIAETKLGK KVEKAVITVP
160 170 180 190 200
AYFNDNQRQA TKDAGAIAGL NVLRIINEPT AAAIAYGLGS GKSDKERNVL
210 220 230 240 250
IYDLGGGTFD VSLLNIQGGV FTVKATAGDT HLGGQDFDTN LLEYCKKEFT
260 270 280 290 300
RKTKKDLSGD ARALRRLRTA CERAKRTLSS GAQTTIEIDS LFDGEDFNIQ
310 320 330 340 350
ITRARFEDLN AKAFAGTLEP VAQVLKDAGI EKHQVDEIVL VGGSTRIPRI
360 370 380 390 400
QKLLSEFFDG KKLEKSINPD EAVAYGAAVQ AGILSGKATS ADTSDLLLLD
410 420 430 440 450
VVPLSLGVAM EGNIFAPVVP RGQTVPTIKK RTFTTVADNQ QTVQFPVYQG
460 470 480 490 500
ERVNCEDNTL LGEFTLAPIP PMKAGEPVLE VVFEVDVNGI LKVTATEKTS
510 520 530 540 550
GRSANITIAN SVGKLSTDEI EKMISDAEKF KSKDEAFSKR FEAKQQLESY
560 570 580 590 600
ISRVEEIISD PTLSLKLKRG QKDKIEQALS EAMAQLEIED STADELKKKE
610
LALKRLVTKA MASR
Length:614
Mass (Da):67,030
Last modified:February 15, 2017 - v2
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:iB626C8FB94428542
GO

<p>This subsection of the ‘Sequence’ section reports difference(s) between the protein sequence shown in the UniProtKB entry and other available protein sequences derived from the same gene.<p><a href='/help/sequence_caution' target='_top'>More...</a></p>Sequence cautioni

The sequence EGS19221 differs from that shown. Reason: Erroneous gene model prediction.Curated

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
GL988045 Genomic DNA Translation: EGS19221.1 Sequence problems.

NCBI Reference Sequences

More...
RefSeqi
XP_006696166.1, XM_006696103.1

Genome annotation databases

Ensembl fungal genome annotation project

More...
EnsemblFungii
EGS19221; EGS19221; CTHT_0058460

Database of genes from NCBI RefSeq genomes

More...
GeneIDi
18259884

KEGG: Kyoto Encyclopedia of Genes and Genomes

More...
KEGGi
cthr:CTHT_0058460

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
GL988045 Genomic DNA Translation: EGS19221.1 Sequence problems.
RefSeqiXP_006696166.1, XM_006696103.1

3D structure databases

Select the link destinations:
PDBei
RCSB PDBi
PDBji
Links Updated
PDB entryMethodResolution (Å)ChainPositionsPDBsum
5TKYX-ray2.60A/B4-613[»]
SMRiG0SCU5
ModBaseiSearch...
MobiDBiSearch...

Protein-protein interaction databases

STRINGi209285.XP_006696166.1

Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Genome annotation databases

EnsemblFungiiEGS19221; EGS19221; CTHT_0058460
GeneIDi18259884
KEGGicthr:CTHT_0058460

Phylogenomic databases

KOiK03283
OrthoDBi288077at2759

Family and domain databases

Gene3Di1.20.1270.10, 1 hit
2.60.34.10, 1 hit
InterProiView protein in InterPro
IPR018181 Heat_shock_70_CS
IPR029048 HSP70_C_sf
IPR029047 HSP70_peptide-bd_sf
IPR013126 Hsp_70_fam
PANTHERiPTHR19375 PTHR19375, 1 hit
PfamiView protein in Pfam
PF00012 HSP70, 1 hit
PRINTSiPR00301 HEATSHOCK70
SUPFAMiSSF100920 SSF100920, 1 hit
SSF100934 SSF100934, 1 hit
PROSITEiView protein in PROSITE
PS00329 HSP70_2, 1 hit
PS01036 HSP70_3, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiSSB1_CHATD
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: G0SCU5
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: February 15, 2017
Last sequence update: February 15, 2017
Last modified: April 10, 2019
This is version 27 of the entry and version 2 of the sequence. See complete history.
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programFungal Protein Annotation Program

<p>This section contains any relevant information that doesn’t fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

3D-structure, Complete proteome, Reference proteome

Documents

  1. SIMILARITY comments
    Index of protein domains and families
  2. PDB cross-references
    Index of Protein Data Bank (PDB) cross-references
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again