Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 64 (31 Jul 2019)
Sequence version 2 (16 Jan 2019)
Previous versions | rss
Help videoAdd a publicationFeedback
Protein

APETALA2-like protein 1

Gene

AP2-1

Organism
Oryza sativa subsp. indica (Rice)
Status
Reviewed-Annotation score:

Annotation score:3 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at transcript leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Probable transcription factor (By similarity). Involved in spikelet transition. Regulator of starch biosynthesis especially during seed development (e.g. endosperm starch granules); represses the expression of type I starch synthesis genes. Prevents lemma and palea elongation as well as grain growth (By similarity).By similarity

Regions

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section specifies the position and type of each DNA-binding domain present within the protein.<p><a href='/help/dna_bind' target='_top'>More...</a></p>DNA bindingi171 – 227AP2/ERF 1PROSITE-ProRule annotationAdd BLAST57
DNA bindingi263 – 320AP2/ERF 2PROSITE-ProRule annotationAdd BLAST58

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionDNA-binding
Biological processTranscription, Transcription regulation

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
APETALA2-like protein 1Curated
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:AP2-1Curated
ORF Names:OsI_18248Imported
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiOryza sativa subsp. indica (Rice)
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri39946 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaViridiplantaeStreptophytaEmbryophytaTracheophytaSpermatophytaMagnoliopsidaLiliopsidaPoalesPoaceaeBOP cladeOryzoideaeOryzeaeOryzinaeOryzaOryza sativa
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
  • UP000007015 <p>A UniProt <a href="http://www.uniprot.org/manual/proteomes_manual">proteome</a> can consist of several components. <br></br>The component name refers to the genomic component encoding a set of proteins.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Chromosome 5

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Extracellular region or secreted Cytosol Plasma membrane Cell wall Cytoskeleton Vacuole Chloroplast Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertion Graphics by Christian Stolte & Seán O’Donoghue; Source: COMPARTMENTS

Keywords - Cellular componenti

Nucleus

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00004459881 – 512APETALA2-like protein 1Add BLAST512

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

May form homodimer (By similarity).

Interacts with TPR2/ASP1 (By similarity).

By similarity

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Motif

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes a short (usually not more than 20 amino acids) conserved sequence motif of biological significance.<p><a href='/help/motif' target='_top'>More...</a></p>Motifi159 – 168Nuclear localization signalSequence analysis10
Motifi341 – 345EARBy similarity5

Compositional bias

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes the position of regions of compositional bias within the protein and the particular amino acids that are over-represented within those regions.<p><a href='/help/compbias' target='_top'>More...</a></p>Compositional biasi52 – 155Pro-richPROSITE-ProRule annotationAdd BLAST104
Compositional biasi460 – 506Ser-richPROSITE-ProRule annotationAdd BLAST47

<p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Keywords - Domaini

Repeat

Phylogenomic databases

evolutionary genealogy of genes: Non-supervised Orthologous Groups

More...
eggNOGi
ENOG410II4N Eukaryota
ENOG410YD13 LUCA

The HOGENOM Database of Homologous Genes from Fully Sequenced Organisms

More...
HOGENOMi
HOG000293136

Identification of Orthologs from Complete Genome Data

More...
OMAi
PHPDIRI

Family and domain databases

Conserved Domains Database

More...
CDDi
cd00018 AP2, 2 hits

Gene3D Structural and Functional Annotation of Protein Families

More...
Gene3Di
3.30.730.10, 2 hits

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR001471 AP2/ERF_dom
IPR036955 AP2/ERF_dom_sf
IPR016177 DNA-bd_dom_sf

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF00847 AP2, 2 hits

Protein Motif fingerprint database; a protein domain database

More...
PRINTSi
PR00367 ETHRSPELEMNT

Simple Modular Architecture Research Tool; a protein domain database

More...
SMARTi
View protein in SMART
SM00380 AP2, 2 hits

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF54171 SSF54171, 2 hits

PROSITE; a protein domain and family database

More...
PROSITEi
View protein in PROSITE
PS51032 AP2_ERF, 2 hits

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequences (2)i

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

This entry describes 2 <p>This subsection of the ‘Sequence’ section lists the alternative protein sequences (isoforms) that can be generated from the same gene by a single or by the combination of up to four biological events (alternative promoter usage, alternative splicing, alternative initiation and ribosomal frameshifting). Additionally, this section gives relevant information on each alternative protein isoform.<p><a href='/help/alternative_products' target='_top'>More...</a></p> isoformsi produced by alternative splicing. AlignAdd to basket
Isoform 1 (identifier: B8AXC3-1) [UniParc]FASTAAdd to basket

This isoform has been chosen as the <div> <p><b>What is the canonical sequence?</b><p><a href='/help/canonical_and_isoforms' target='_top'>More...</a></p>canonicali sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.

« Hide
        10         20         30         40         50
MELDLNNVAE GVVEKHETAA RSDSGTSESS VLNGEASGAA TTPAEEGSSS
60 70 80 90 100
TPPPPPPPPA AVLEFSILRS SASASGENDA DDDEEEEATP SPPPHHQHQQ
110 120 130 140 150
LLVTRELFPS AAPSPQHWAE LGFLRPDPPR PHPDIRILAH APPPAPPPPP
160 170 180 190 200
PQPQPQAAKK SRRGPRSRSS QYRGVTFYRR TGRWESHIWD CGKQVYLGGF
210 220 230 240 250
DTAHAAARAY DRAAIKFRGV EADINFNLSD YEEDMRQMKS LSKEEFVHVL
260 270 280 290 300
RRQSTGFSRG SSKYRGVTLH KCGRWEARMG QFLGKKYIYL GLFDSEVEAA
310 320 330 340 350
RAYDKAAIKC NGREAVTNFE PSTYDGELPT DAAAQGADVD LNLSISQPAA
360 370 380 390 400
SQQSPKRDSG SLGLQIHHGS FEGSEFKRAK NDAAPSELAS RPHRFPLLTE
410 420 430 440 450
HPPIWTAQPH PLFPNNEDAS RSSDQKRKPS EGVAVPSWAW KQVSHHHPAP
460 470 480 490 500
PHTLPLPFFS SSSSSPSSSS AAASSGFSKA ATTAAAAQHT ATLRFDPTAP
510
SSSSSSRHHH HH
Length:512
Mass (Da):55,567
Last modified:January 16, 2019 - v2
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:i21A85A01422B28EF
GO
Isoform 2 (identifier: B8AXC3-2) [UniParc]FASTAAdd to basket

The sequence of this isoform differs from the canonical sequence as follows:
     380-380: K → KASCNS

Note: No experimental confirmation available.Imported
Show »
Length:517
Mass (Da):56,030
Checksum:iD3C3E77F7D07ECAB
GO

Experimental Info

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Sequence’ section reports difference(s) between the canonical sequence (displayed by default in the entry) and the different sequence submissions merged in the entry. These various submissions may originate from different sequencing projects, different types of experiments, or different biological samples. Sequence conflicts are usually of unknown origin.<p><a href='/help/conflict' target='_top'>More...</a></p>Sequence conflicti344S → R in ABR25960 (Ref. 2) Curated1

Alternative sequence

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Sequence’ section describes the sequence of naturally occurring alternative protein isoform(s). The changes in the amino acid sequence may be due to alternative splicing, alternative promoter usage, alternative initiation, or ribosomal frameshifting.<p><a href='/help/var_seq' target='_top'>More...</a></p>Alternative sequenceiVSP_059994380K → KASCNS in isoform 2. 1

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
CM000130 Genomic DNA Translation: EEC78421.1
EF576372 mRNA Translation: ABR25960.1

Genome annotation databases

Ensembl plant genome annotation project

More...
EnsemblPlantsi
BGIOSGA018911-TA; BGIOSGA018911-PA; BGIOSGA018911 [B8AXC3-2]

Gramene; a comparative resource for plants

More...
Gramenei
BGIOSGA018911-TA; BGIOSGA018911-PA; BGIOSGA018911 [B8AXC3-2]

Keywords - Coding sequence diversityi

Alternative splicing

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
CM000130 Genomic DNA Translation: EEC78421.1
EF576372 mRNA Translation: ABR25960.1

3D structure databases

Database of comparative protein structure models

More...
ModBasei
Search...

SWISS-MODEL Interactive Workspace

More...
SWISS-MODEL-Workspacei
Submit a new modelling project...

Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Genome annotation databases

EnsemblPlantsiBGIOSGA018911-TA; BGIOSGA018911-PA; BGIOSGA018911 [B8AXC3-2]
GrameneiBGIOSGA018911-TA; BGIOSGA018911-PA; BGIOSGA018911 [B8AXC3-2]

Phylogenomic databases

eggNOGiENOG410II4N Eukaryota
ENOG410YD13 LUCA
HOGENOMiHOG000293136
OMAiPHPDIRI

Family and domain databases

CDDicd00018 AP2, 2 hits
Gene3Di3.30.730.10, 2 hits
InterProiView protein in InterPro
IPR001471 AP2/ERF_dom
IPR036955 AP2/ERF_dom_sf
IPR016177 DNA-bd_dom_sf
PfamiView protein in Pfam
PF00847 AP2, 2 hits
PRINTSiPR00367 ETHRSPELEMNT
SMARTiView protein in SMART
SM00380 AP2, 2 hits
SUPFAMiSSF54171 SSF54171, 2 hits
PROSITEiView protein in PROSITE
PS51032 AP2_ERF, 2 hits

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiAP21_ORYSI
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: B8AXC3
Secondary accession number(s): A6N140
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: January 16, 2019
Last sequence update: January 16, 2019
Last modified: July 31, 2019
This is version 64 of the entry and version 2 of the sequence. See complete history.
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programPlant Protein Annotation Program

<p>This section contains any relevant information that doesn’t fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

Complete proteome, Reference proteome

Documents

  1. SIMILARITY comments
    Index of protein domains and families
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again