Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 55 (10 Apr 2019)
Sequence version 1 (01 Jul 2008)
Previous versions | rss
Other tutorials and videosHelp videoFeedback
Protein

PAN2-PAN3 deadenylation complex subunit PAN3

Gene

PAN3

Organism
Pyrenophora tritici-repentis (strain Pt-1C-BFP) (Wheat tan spot fungus) (Drechslera tritici-repentis)
Status
Unreviewed-Annotation score:

Annotation score:3 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Protein inferred from homologyi <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Regulatory subunit of the poly(A)-nuclease (PAN) deadenylation complex, one of two cytoplasmic mRNA deadenylases involved in mRNA turnover. PAN specifically shortens poly(A) tails of RNA and the activity is stimulated by poly(A)-binding protein PAB1. PAN deadenylation is followed by rapid degradation of the shortened mRNA tails by the CCR4-NOT complex. Deadenylated mRNAs are then degraded by two alternative mechanisms, namely exosome-mediated 3'-5' exonucleolytic degradation, or deadenlyation-dependent mRNA decaping and subsequent 5'-3' exonucleolytic degradation by XRN1. May also be involved in post-transcriptional maturation of mRNA poly(A) tails. PAN3 acts as a positive regulator for PAN activity, recruiting the catalytic subunit PAN2 to mRNA via its interaction with RNA and with PAB1.UniRule annotation

Caution

Lacks conserved residue(s) required for the propagation of feature annotation.UniRule annotation

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Function’ section describes the interaction between a single amino acid and another chemical entity. Priority is given to the annotation of physiological ligands.<p><a href='/help/binding' target='_top'>More...</a></p>Binding sitei483ATPUniRule annotation1

Regions

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Function’ section specifies the position(s) and type(s) of zinc fingers within the protein.<p><a href='/help/zn_fing' target='_top'>More...</a></p>Zinc fingeri220 – 248C3H1-typePROSITE-ProRule annotationAdd BLAST29
<p>This subsection of the ‘Function’ section describes a region in the protein which binds nucleotide phosphates. It always involves more than one amino acid and includes all residues involved in nucleotide-binding.<p><a href='/help/np_bind' target='_top'>More...</a></p>Nucleotide bindingi532 – 539ATPUniRule annotation8
Nucleotide bindingi593 – 594ATPUniRule annotation2

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Biological processmRNA processingUniRule annotation
LigandATP-bindingUniRule annotation, Metal-binding, Nucleotide-binding, Zinc

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
PAN2-PAN3 deadenylation complex subunit PAN3UniRule annotation
Alternative name(s):
PAB1P-dependent poly(A)-specific ribonucleaseUniRule annotation
Poly(A)-nuclease deadenylation complex subunit 3UniRule annotation
Short name:
PAN deadenylation complex subunit 3UniRule annotation
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:PAN3UniRule annotation
ORF Names:PTRG_10345Imported
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiPyrenophora tritici-repentis (strain Pt-1C-BFP) (Wheat tan spot fungus) (Drechslera tritici-repentis)Imported
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri426418 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaFungiDikaryaAscomycotaPezizomycotinaDothideomycetesPleosporomycetidaePleosporalesPleosporineaePleosporaceaePyrenophora
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
  • UP000001471 <p>A UniProt <a href="http://www.uniprot.org/manual/proteomes_manual">proteome</a> can consist of several components. <br></br>The component name refers to the genomic component encoding a set of proteins.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Unassembled WGS sequence

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Keywords - Cellular componenti

CytoplasmUniRule annotation

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

Homodimer. Forms a heterotrimer with a catalytic subunit PAN2 to form the poly(A)-nuclease (PAN) deadenylation complex. Interacts (via PAM-2 motif) with poly(A)-binding protein PAB1 (via PABC domain), conferring substrate specificity of the enzyme complex.UniRule annotation

Protein-protein interaction databases

STRING: functional protein association networks

More...
STRINGi
45151.EDU43396

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Domains and Repeats

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/family_and_domains_section">Family and Domains</a> section describes the position and type of a domain, which is defined as a specific combination of secondary structures organized into a characteristic three-dimensional structure or fold.<p><a href='/help/domain' target='_top'>More...</a></p>Domaini220 – 248C3H1-typeInterPro annotationAdd BLAST29
Domaini454 – 767Protein kinaseInterPro annotationAdd BLAST314

Region

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni744 – 854Knob domainUniRule annotationAdd BLAST111

Coiled coil

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and domains’ section denotes the positions of regions of coiled coil within the protein.<p><a href='/help/coiled' target='_top'>More...</a></p>Coiled coili705 – 743UniRule annotationAdd BLAST39

<p>This subsection of the ‘Family and domains’ section provides general information on the biological role of a domain. The term ‘domain’ is intended here in its wide acceptation, it may be a structural domain, a transmembrane region or a functional domain. Several domains are described in this subsection.<p><a href='/help/domain_cc' target='_top'>More...</a></p>Domaini

Contains a pseudokinase domain. The protein kinase domain is predicted to be catalytically inactive because some of the residues important for catalytic activity are substituted and it lacks the equivalent of the binding site for a peptide substrate. However, it has retained an ATP-binding site and ATP-binding is required for mRNA degradation, stimulating the activity of the PAN2 nuclease in vitro. The nucleotide-binding site is juxtaposed to the RNase active site of PAN2 in the complex and may actually bind nucleosides of a poly(A) RNA rather than ATP, feeding the poly(A)-tail to the active site of the deadenylase and thus increasing the efficiency with which this distributive enzyme degrades oligo(A) RNAs.UniRule annotation
The N-terminal zinc finger binds to poly(A) RNA.UniRule annotation
The pseudokinase domain, the coiled-coil (CC), and C-terminal knob domain (CK) form a structural unit (PKC) that forms an extensive high-affinity interaction surface for PAN2.UniRule annotation

<p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Belongs to the protein kinase superfamily. PAN3 family.UniRule annotation

Zinc finger

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Zinc fingeri220 – 248C3H1-typePROSITE-ProRule annotationAdd BLAST29

Keywords - Domaini

Coiled coilUniRule annotation, Zinc-fingerPROSITE-ProRule annotation

Phylogenomic databases

evolutionary genealogy of genes: Non-supervised Orthologous Groups

More...
eggNOGi
KOG3741 Eukaryota
ENOG410XQ42 LUCA

InParanoid: Eukaryotic Ortholog Groups

More...
InParanoidi
B2WJJ9

Database of Orthologous Groups

More...
OrthoDBi
1515085at2759

Family and domain databases

HAMAP database of protein families

More...
HAMAPi
MF_03181 PAN3, 1 hit

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR011009 Kinase-like_dom_sf
IPR030844 PAN3
IPR041332 Pan3_PK
IPR000719 Prot_kinase_dom
IPR000571 Znf_CCCH

The PANTHER Classification System

More...
PANTHERi
PTHR12272 PTHR12272, 2 hits

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF18101 Pan3_PK, 1 hit

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF56112 SSF56112, 1 hit

PROSITE; a protein domain and family database

More...
PROSITEi
View protein in PROSITE
PS50011 PROTEIN_KINASE_DOM, 1 hit
PS50103 ZF_C3H1, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>.<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

B2WJJ9-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MSGGSAHVHV HAEHEAAARS KALPLSLPLM TSLSNVAAGS SHHKGSRLPT
60 70 80 90 100
IQPASPNKGA PHASPTSNRP AYFAIPKGHP HATAIVSSAS STTESLSELT
110 120 130 140 150
PSSSRDSLPH PQGRNGPTTP QKQSRNNRRK TPTKSGGRWS RGGASSDDTA
160 170 180 190 200
TDRKPPTSQP AEHAQSTTRS PHTSSKTRHQ PSIATNTPSN HQPRFMATAF
210 220 230 240 250
GGPSGDSRRG VVSPRPKGRE AKNTLCRNVT IYGHCRYENT CPYIHDSLKL
260 270 280 290 300
NQNENTKKRF NVDSPSFTPL QASTNGSVTP SSRSAAISPK AANAAVFTPK
310 320 330 340 350
SQRSTVTTPH MHAKEPAIDW HTQDFQEFVP QNFESQQMVD PNVGYDPFST
360 370 380 390 400
PTNISSMAGP SHQPPTINPY AQDASATYFQ NANAFQNPAY HLYWPVGPQP
410 420 430 440 450
SGLLAYQRTA HDFFIPDALR EELQKKAEIA RQVAPNSTLP AIEQFHSLFC
460 470 480 490 500
LDISPQKNTA PFGYASWIYK AVSSKDGKTY ALRRLENFRL TSETAIRSAQ
510 520 530 540 550
PWKRVLNGNV VTIHEAFTTR AFGDSSLILV TDYHPNSKSL ADEHFKPAQR
560 570 580 590 600
FHGRQPTSSH VPEQVLWGYT VQIASALKAI HGSGLAARLI TPSKILLTSK
610 620 630 640 650
NRIRLNACSI MDIVQFDNAR PVSELQADDF IQLGRLILCI ANNNPTAHLQ
660 670 680 690 700
MQKSIDYITR SYTARLKECV QWLLNPQPSS GSPSSPTSPV PMQKDIDTFL
710 720 730 740 750
AGIADQFASV FDSELHAQDT LIVNLGRELE SSRLVRLLIK LSMINERPEL
760 770 780 790 800
DASQNMPGNA GASSSTVWAE TGERYYLKLF RDYVFHQVDQ NGHPVTDLAH
810 820 830 840 850
VLDCLNKLDA GTDEKIPLIS RDEQNVLIVS YREVKRALES AFQDLVRAGR

ASGK
Length:854
Mass (Da):93,669
Last modified:July 1, 2008 - v1
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:i4EE19FC6F8AD84B4
GO

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
DS231627 Genomic DNA Translation: EDU43396.1

NCBI Reference Sequences

More...
RefSeqi
XP_001940677.1, XM_001940642.1

Genome annotation databases

Ensembl fungal genome annotation project

More...
EnsemblFungii
EDU43396; EDU43396; PTRG_10345

Database of genes from NCBI RefSeq genomes

More...
GeneIDi
6348647

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
DS231627 Genomic DNA Translation: EDU43396.1
RefSeqiXP_001940677.1, XM_001940642.1

3D structure databases

Database of comparative protein structure models

More...
ModBasei
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

Protein-protein interaction databases

STRINGi45151.EDU43396

Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Genome annotation databases

EnsemblFungiiEDU43396; EDU43396; PTRG_10345
GeneIDi6348647

Phylogenomic databases

eggNOGiKOG3741 Eukaryota
ENOG410XQ42 LUCA
InParanoidiB2WJJ9
OrthoDBi1515085at2759

Family and domain databases

HAMAPiMF_03181 PAN3, 1 hit
InterProiView protein in InterPro
IPR011009 Kinase-like_dom_sf
IPR030844 PAN3
IPR041332 Pan3_PK
IPR000719 Prot_kinase_dom
IPR000571 Znf_CCCH
PANTHERiPTHR12272 PTHR12272, 2 hits
PfamiView protein in Pfam
PF18101 Pan3_PK, 1 hit
SUPFAMiSSF56112 SSF56112, 1 hit
PROSITEiView protein in PROSITE
PS50011 PROTEIN_KINASE_DOM, 1 hit
PS50103 ZF_C3H1, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiB2WJJ9_PYRTR
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: B2WJJ9
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/TrEMBL: July 1, 2008
Last sequence update: July 1, 2008
Last modified: April 10, 2019
This is version 55 of the entry and version 1 of the sequence. See complete history.
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiUnreviewed (UniProtKB/TrEMBL)

<p>This section contains any relevant information that doesn’t fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

Complete proteome, Reference proteomeImported
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again