Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 90 (13 Feb 2019)
Sequence version 1 (23 Jan 2007)
Previous versions | rss
Other tutorials and videosHelp videoFeedback
Protein

ATP-dependent 6-phosphofructokinase, liver type

Gene

PFKL

Organism
Bos taurus (Bovine)
Status
Reviewed-Annotation score:

Annotation score:5 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at transcript leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis (By similarity). Negatively regulates the phagocyte oxidative burst in response to bacterial infection by controlling cellular NADPH biosynthesis and NADPH oxidase-derived reactive oxygen species. Upon macrophage activation, drives the metabolic switch toward glycolysis, thus preventing glucose turnover that produces NADPH via pentose phosphate pathway (By similarity).UniRule annotationBy similarity

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes the catalytic activity of an enzyme, i.e. a chemical reaction that the enzyme catalyzes.<p><a href='/help/catalytic_activity' target='_top'>More...</a></p>Catalytic activityi

<p>This subsection of the ‘Function’ section provides information relevant to cofactors. A cofactor is any non-protein substance required for a protein to be catalytically active. Some cofactors are inorganic, such as the metal atoms zinc, iron, and copper in various oxidation states. Others, such as most vitamins, are organic.<p><a href='/help/cofactor' target='_top'>More...</a></p>Cofactori

Mg2+UniRule annotation

<p>This subsection of the ‘Function’ section describes regulatory mechanisms for enzymes, transporters or microbial transcription factors, and reports the components which regulate (by activation or inhibition) the reaction.<p><a href='/help/activity_regulation' target='_top'>More...</a></p>Activity regulationi

Allosterically activated by ADP, AMP, or fructose 2,6-bisphosphate, and allosterically inhibited by ATP or citrate. GlcNAcylation by OGT overcomes allosteric regulation (By similarity).UniRule annotation

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section describes the metabolic pathway(s) associated with a protein.<p><a href='/help/pathway' target='_top'>More...</a></p>Pathwayi: glycolysis

This protein is involved in step 3 of the subpathway that synthesizes D-glyceraldehyde 3-phosphate and glycerone phosphate from D-glucose.UniRule annotation
Proteins known to be involved in the 4 steps of the subpathway in this organism are:
  1. no protein annotated in this organism
  2. Glucose-6-phosphate isomerase (GPI)
  3. ATP-dependent 6-phosphofructokinase (PFKP), ATP-dependent 6-phosphofructokinase, liver type (PFKL), ATP-dependent 6-phosphofructokinase, muscle type (PFKM)
  4. Fructose-bisphosphate aldolase (ALDOB), Fructose-bisphosphate aldolase (ALDOC), Fructose-bisphosphate aldolase (ALDOA), Fructose-bisphosphate aldolase B (ALDOB)
This subpathway is part of the pathway glycolysis, which is itself part of Carbohydrate degradation.
View all proteins of this organism that are known to be involved in the subpathway that synthesizes D-glyceraldehyde 3-phosphate and glycerone phosphate from D-glucose, the pathway glycolysis and in Carbohydrate degradation.

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Function’ section describes the interaction between a single amino acid and another chemical entity. Priority is given to the annotation of physiological ligands.<p><a href='/help/binding' target='_top'>More...</a></p>Binding sitei25ATP; via amide nitrogenUniRule annotation1
<p>This subsection of the ‘Function’ section indicates at which position the protein binds a given metal ion. The nature of the metal is indicated in the ‘Description’ field.<p><a href='/help/metal' target='_top'>More...</a></p>Metal bindingi119Magnesium; catalyticUniRule annotation1
<p>This subsection of the ‘Function’ section is used for enzymes and indicates the residues directly involved in catalysis.<p><a href='/help/act_site' target='_top'>More...</a></p>Active sitei166Proton acceptorUniRule annotation1
Binding sitei201Substrate; shared with dimeric partnerUniRule annotation1
Binding sitei264SubstrateUniRule annotation1
Binding sitei292Substrate; shared with dimeric partnerUniRule annotation1
Binding sitei470Allosteric activator fructose 2,6-bisphosphateUniRule annotation1
Binding sitei565Allosteric activator fructose 2,6-bisphosphate; shared with dimeric partnerUniRule annotation1
Binding sitei628Allosteric activator fructose 2,6-bisphosphateUniRule annotation1
Binding sitei654Allosteric activator fructose 2,6-bisphosphate; shared with dimeric partnerUniRule annotation1
Binding sitei734Allosteric activator fructose 2,6-bisphosphateUniRule annotation1

Regions

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Function’ section describes a region in the protein which binds nucleotide phosphates. It always involves more than one amino acid and includes all residues involved in nucleotide-binding.<p><a href='/help/np_bind' target='_top'>More...</a></p>Nucleotide bindingi88 – 89ATPUniRule annotation2
Nucleotide bindingi118 – 121ATPUniRule annotation4

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionAllosteric enzyme, Kinase, Transferase
Biological processGlycolysis
LigandATP-binding, Magnesium, Metal-binding, Nucleotide-binding

Enzyme and pathway databases

Reactome - a knowledgebase of biological pathways and processes

More...
Reactomei
R-BTA-6798695 Neutrophil degranulation
R-BTA-70171 Glycolysis

UniPathway: a resource for the exploration and annotation of metabolic pathways

More...
UniPathwayi
UPA00109;UER00182

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
ATP-dependent 6-phosphofructokinase, liver typeUniRule annotation (EC:2.7.1.11UniRule annotation)
Short name:
ATP-PFKUniRule annotation
Short name:
PFK-L
Alternative name(s):
6-phosphofructokinase type B
Phosphofructo-1-kinase isozyme B
Short name:
PFK-B
PhosphohexokinaseUniRule annotation
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:PFKL
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiBos taurus (Bovine)
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri9913 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaLaurasiatheriaCetartiodactylaRuminantiaPecoraBovidaeBovinaeBos
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
  • UP000009136 <p>A UniProt <a href="http://www.uniprot.org/manual/proteomes_manual">proteome</a> can consist of several components. <br></br>The component name refers to the genomic component encoding a set of proteins.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Chromosome 1

Organism-specific databases

Vertebrate Gene Nomenclature Database

More...
VGNCi
VGNC:32773 PFKL

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte; Source: COMPARTMENTS

Keywords - Cellular componenti

Cytoplasm

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section indicates that the initiator methionine is cleaved from the mature protein.<p><a href='/help/init_met' target='_top'>More...</a></p>Initiator methionineiRemovedBy similarity
<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00002844402 – 780ATP-dependent 6-phosphofructokinase, liver typeAdd BLAST779

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei2N-acetylalanineBy similarity1
Modified residuei377PhosphoserineBy similarity1
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM / Processing</a> section specifies the position and type of each covalently attached glycan group (mono-, di-, or polysaccharide).<p><a href='/help/carbohyd' target='_top'>More...</a></p>Glycosylationi529O-linked (GlcNAc) serineBy similarity1
Modified residuei640PhosphotyrosineBy similarity1
Modified residuei775PhosphoserineBy similarity1

<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

GlcNAcylation at Ser-529 by OGT decreases enzyme activity, leading to redirect glucose flux through the oxidative pentose phosphate pathway. Glycosylation is stimulated by both hypoxia and glucose deprivation (By similarity).By similarity

Keywords - PTMi

Acetylation, Glycoprotein, Phosphoprotein

Proteomic databases

PaxDb, a database of protein abundance averages across all three domains of life

More...
PaxDbi
A1A4J1

PeptideAtlas

More...
PeptideAtlasi
A1A4J1

PRoteomics IDEntifications database

More...
PRIDEi
A1A4J1

<p>This section provides information on the expression of a gene at the mRNA or protein level in cells or in tissues of multicellular organisms.<p><a href='/help/expression_section' target='_top'>More...</a></p>Expressioni

Gene expression databases

Bgee dataBase for Gene Expression Evolution

More...
Bgeei
ENSBTAG00000010658 Expressed in 9 organ(s), highest expression level in adult mammalian kidney

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

Homo- and heterotetramers (By similarity). Phosphofructokinase (PFK) enzyme functions as a tetramer composed of different combinations of 3 types of subunits, called PFKM (M), PFKL (L) and PFKP (P). The composition of the PFK tetramer differs according to the tissue type it is present in. The kinetic and regulatory properties of the tetrameric enzyme are dependent on the subunit composition, hence can vary across tissues (Probable).UniRule annotationCurated

GO - Molecular functioni

Protein-protein interaction databases

CORUM comprehensive resource of mammalian protein complexes

More...
CORUMi
A1A4J1

STRING: functional protein association networks

More...
STRINGi
9913.ENSBTAP00000051545

<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei

3D structure databases

Protein Model Portal of the PSI-Nature Structural Biology Knowledgebase

More...
ProteinModelPortali
A1A4J1

SWISS-MODEL Repository - a database of annotated 3D protein structure models

More...
SMRi
A1A4J1

Database of comparative protein structure models

More...
ModBasei
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Region

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni2 – 390N-terminal catalytic PFK domain 1Add BLAST389
Regioni164 – 166Substrate bindingUniRule annotation3
Regioni208 – 210Substrate bindingUniRule annotation3
Regioni298 – 301Substrate bindingUniRule annotation4
Regioni391 – 400Interdomain linker10
Regioni401 – 780C-terminal regulatory PFK domain 2Add BLAST380
Regioni527 – 531Allosteric activator fructose 2,6-bisphosphate bindingUniRule annotation5
Regioni572 – 574Allosteric activator fructose 2,6-bisphosphate bindingUniRule annotation3
Regioni660 – 663Allosteric activator fructose 2,6-bisphosphate bindingUniRule annotation4

<p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Phylogenomic databases

evolutionary genealogy of genes: Non-supervised Orthologous Groups

More...
eggNOGi
KOG2440 Eukaryota
COG0205 LUCA

Ensembl GeneTree

More...
GeneTreei
ENSGT00940000159292

The HOGENOM Database of Homologous Genes from Fully Sequenced Organisms

More...
HOGENOMi
HOG000200154

The HOVERGEN Database of Homologous Vertebrate Genes

More...
HOVERGENi
HBG000976

InParanoid: Eukaryotic Ortholog Groups

More...
InParanoidi
A1A4J1

KEGG Orthology (KO)

More...
KOi
K00850

Identification of Orthologs from Complete Genome Data

More...
OMAi
DPFNIQD

Database of Orthologous Groups

More...
OrthoDBi
172878at2759

TreeFam database of animal gene trees

More...
TreeFami
TF300411

Family and domain databases

HAMAP database of protein families

More...
HAMAPi
MF_03184 Phosphofructokinase_I_E, 1 hit

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR009161 6-Pfructokinase_euk
IPR022953 ATP_PFK
IPR015912 Phosphofructokinase_CS
IPR000023 Phosphofructokinase_dom
IPR035966 PKF_sf

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF00365 PFK, 2 hits

PIRSF; a whole-protein classification database

More...
PIRSFi
PIRSF000533 ATP_PFK_euk, 1 hit

Protein Motif fingerprint database; a protein domain database

More...
PRINTSi
PR00476 PHFRCTKINASE

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF53784 SSF53784, 2 hits

TIGRFAMs; a protein family database

More...
TIGRFAMsi
TIGR02478 6PF1K_euk, 1 hit

PROSITE; a protein domain and family database

More...
PROSITEi
View protein in PROSITE
PS00433 PHOSPHOFRUCTOKINASE, 2 hits

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>.<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is in its mature form or if it represents the precursor.<p><a href='/help/sequence_processing' target='_top'>More...</a></p>Sequence processingi: The displayed sequence is further processed into a mature form.

A1A4J1-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MASVDLEKLR TTGAGKAIGV LTSGGDAQGM NAAVRAVTRM GIYVGAKVFL
60 70 80 90 100
IYEGYEGLVE GGENIKQANW LSVSNIIQLG GTVIGSARCK AFTTREGRRA
110 120 130 140 150
AAYNLVQRGI TNLCVIGGDG SLTGANIFRS EWGSLLEELV SEGKISEGTA
160 170 180 190 200
QTYSHLNIAG LVGSIDNDFC GTDMTIGTDS ALHRIMEVID AITTTAQSHQ
210 220 230 240 250
RTFVLEVMGR HCGYLALVSA LASGADWLFI PEAPPEDGWE NFMCERLGET
260 270 280 290 300
RSRGSRLNII IIAEGAIDRN GKPISSRYVK DLVVQRLGFD TRVTVLGHVQ
310 320 330 340 350
RGGTPSAFDR ILSSKMGMEA VMALLEATPD TPACVVSLSG NQSVRLPLME
360 370 380 390 400
CVQMTKEVQK AMDEKRFDEA IQLRGGSFEN NWNIYKLLSH QKISKEKTNF
410 420 430 440 450
SLAILNVGAP AAGMNAAVRS AVRSGISQGH TVYVVHDGFE GLAKNQVQEV
460 470 480 490 500
SWHDVAGWLG RGGSMLGTKR TLPKGFMEKI VENIRLHNIH ALLVIGGFEA
510 520 530 540 550
YEGVLQLVEA RGRYEELCIV MCVIPATISN NVPGTDFSLG SDTAVNAAME
560 570 580 590 600
SCDRIKQSAS GTKRRVFIVE TMGGYCGYLA TVTGIAVGAD AAYVFEDPFN
610 620 630 640 650
IQDLKANVEH MTEKMKTEIQ RGLVLRNEKC HEHYTTEFLY NLYSSEGKGV
660 670 680 690 700
FDCRTNVLGH LQQGGAPTPF DRNYGTKLGV KAIIWMSEKL RAVYRNGRVF
710 720 730 740 750
ANASDSACVI GLQKKVVAFS PVTELKKDTD FEHRMPREQW WLNLRLMLKM
760 770 780
LAHYRISMAD YVSGELEHVT RRTLSIETGF
Length:780
Mass (Da):85,292
Last modified:January 23, 2007 - v1
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:iCB081193084B757D
GO

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
BC126578 mRNA Translation: AAI26579.1

NCBI Reference Sequences

More...
RefSeqi
NP_001073713.1, NM_001080244.2

UniGene gene-oriented nucleotide sequence clusters

More...
UniGenei
Bt.5061

Genome annotation databases

Ensembl eukaryotic genome annotation project

More...
Ensembli
ENSBTAT00000056305; ENSBTAP00000051545; ENSBTAG00000010658

Database of genes from NCBI RefSeq genomes

More...
GeneIDi
508683

KEGG: Kyoto Encyclopedia of Genes and Genomes

More...
KEGGi
bta:508683

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
BC126578 mRNA Translation: AAI26579.1
RefSeqiNP_001073713.1, NM_001080244.2
UniGeneiBt.5061

3D structure databases

ProteinModelPortaliA1A4J1
SMRiA1A4J1
ModBaseiSearch...
MobiDBiSearch...

Protein-protein interaction databases

CORUMiA1A4J1
STRINGi9913.ENSBTAP00000051545

Proteomic databases

PaxDbiA1A4J1
PeptideAtlasiA1A4J1
PRIDEiA1A4J1

Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Genome annotation databases

EnsembliENSBTAT00000056305; ENSBTAP00000051545; ENSBTAG00000010658
GeneIDi508683
KEGGibta:508683

Organism-specific databases

Comparative Toxicogenomics Database

More...
CTDi
5211
VGNCiVGNC:32773 PFKL

Phylogenomic databases

eggNOGiKOG2440 Eukaryota
COG0205 LUCA
GeneTreeiENSGT00940000159292
HOGENOMiHOG000200154
HOVERGENiHBG000976
InParanoidiA1A4J1
KOiK00850
OMAiDPFNIQD
OrthoDBi172878at2759
TreeFamiTF300411

Enzyme and pathway databases

UniPathwayi
UPA00109;UER00182

ReactomeiR-BTA-6798695 Neutrophil degranulation
R-BTA-70171 Glycolysis

Gene expression databases

BgeeiENSBTAG00000010658 Expressed in 9 organ(s), highest expression level in adult mammalian kidney

Family and domain databases

HAMAPiMF_03184 Phosphofructokinase_I_E, 1 hit
InterProiView protein in InterPro
IPR009161 6-Pfructokinase_euk
IPR022953 ATP_PFK
IPR015912 Phosphofructokinase_CS
IPR000023 Phosphofructokinase_dom
IPR035966 PKF_sf
PfamiView protein in Pfam
PF00365 PFK, 2 hits
PIRSFiPIRSF000533 ATP_PFK_euk, 1 hit
PRINTSiPR00476 PHFRCTKINASE
SUPFAMiSSF53784 SSF53784, 2 hits
TIGRFAMsiTIGR02478 6PF1K_euk, 1 hit
PROSITEiView protein in PROSITE
PS00433 PHOSPHOFRUCTOKINASE, 2 hits

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiPFKAL_BOVIN
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: A1A4J1
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: April 17, 2007
Last sequence update: January 23, 2007
Last modified: February 13, 2019
This is version 90 of the entry and version 1 of the sequence. See complete history.
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

<p>This section contains any relevant information that doesn’t fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Keywords - Technical termi

Complete proteome, Reference proteome

Documents

  1. SIMILARITY comments
    Index of protein domains and families
  2. PATHWAY comments
    Index of metabolic and biosynthesis pathways
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again