Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 8 (11 Dec 2019)
Sequence version 1 (30 Aug 2017)
Previous versions | rss
Add a publicationFeedback
Protein

Cytochrome P450 monooxygenase adrA

Gene

adrA

Organism
Penicillium roqueforti
Status
Reviewed-Annotation score:

Annotation score:4 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the 'correct annotation' for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Protein inferred from homologyi <p>This indicates the type of evidence that supports the existence of the protein. Note that the 'protein existence' evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Cytochrome P450 monooxygenase; part of the gene cluster that mediates the biosynthesis of andrastins, meroterpenoid compounds that exhibit inhibitory activity against ras farnesyltransferase, suggesting that they could be promising leads for antitumor agents (PubMed:28529508).

The first step of the pathway is the synthesis of 3,5-dimethylorsellinic acid (DMOA) by the polyketide synthase adrD via condensation of one acetyl-CoA starter unit with 3 malonyl-CoA units and 2 methylations (By similarity).

DMAO is then converted to farnesyl-DMAO by the prenyltransferase adrG (By similarity).

The methyltransferase adrK catalyzes the methylation of the carboxyl group of farnesyl-DMAO to farnesyl-DMAO methyl ester which is further converted to epoxyfarnesyl-DMAO methyl ester by the FAD-dependent monooxygenase adrH (By similarity).

The terpene cyclase adrI then catalyzes the carbon skeletal rearrangement to generate the andrastin E, the first compound in the pathway having the andrastin scaffold, with the tetracyclic ring system (By similarity).

The post-cyclization tailoring enzymes adrF, adrE, adrJ, and adrA, are involved in the conversion of andrastin E into andrastin A. The short chain dehydrogenase adrF is responsible for the oxidation of the C-3 a hydroxyl group of andrastin E to yield the corresponding ketone, andrastin D. The ketoreductase adrE stereoselectively reduces the carbonyl moiety to reverse the stereochemistry of the C-3 position to yield andrastin F. The acetyltransferase adrJ is the acetyltransferase that attaches the acetyl group to the C-3 hydroxyl group of andrastin F to yield andrastin C. Finally, the cytochrome P450 monooxygenase adrA catalyzes two sequential oxidation reactions of the C-23 methyl group, to generate the corresponding alcohol andrastin B, and aldehyde andrastin A (By similarity).

By similarity1 Publication

<p>This subsection of the 'Function' section provides information relevant to cofactors. A cofactor is any non-protein substance required for a protein to be catalytically active. Some cofactors are inorganic, such as the metal atoms zinc, iron, and copper in various oxidation states. Others, such as most vitamins, are organic.<p><a href='/help/cofactor' target='_top'>More...</a></p>Cofactori

hemeBy similarity

<p>This subsection of the <a href="http://www.uniprot.org/help/function%5Fsection">'Function'</a> section describes the metabolic pathway(s) associated with a protein.<p><a href='/help/pathway' target='_top'>More...</a></p>Pathwayi: terpenoid biosynthesis

This protein is involved in the pathway terpenoid biosynthesis, which is part of Secondary metabolite biosynthesis.1 Publication
View all proteins of this organism that are known to be involved in the pathway terpenoid biosynthesis and in Secondary metabolite biosynthesis.

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/function%5Fsection">Function</a> section indicates at which position the protein binds a given metal ion. The nature of the metal is indicated in the 'Description' field.<p><a href='/help/metal' target='_top'>More...</a></p>Metal bindingi449Iron (heme axial ligand)By similarity1

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionMonooxygenase, Oxidoreductase
LigandHeme, Iron, Metal-binding

Enzyme and pathway databases

UniPathway: a resource for the exploration and annotation of metabolic pathways

More...
UniPathwayi
UPA00213

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Cytochrome P450 monooxygenase adrA1 Publication (EC:1.-.-.-1 Publication)
Alternative name(s):
Andrastin A biosynthesis cluster protein A1 Publication
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: 'Name', 'Synonyms', 'Ordered locus names' and 'ORF names'.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:adrA1 Publication
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiPenicillium roqueforti
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the 'taxonomic identifier' or 'taxid'.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri5082 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaFungiDikaryaAscomycotaPezizomycotinaEurotiomycetesEurotiomycetidaeEurotialesAspergillaceaePenicillium

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

Topology

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/subcellular%5Flocation%5Fsection">'Subcellular location'</a> section describes the extent of a membrane-spanning region of the protein. It denotes the presence of both alpha-helical transmembrane regions and the membrane spanning regions of beta-barrel transmembrane proteins.<p><a href='/help/transmem' target='_top'>More...</a></p>Transmembranei12 – 32HelicalSequence analysisAdd BLAST21

Keywords - Cellular componenti

Membrane

<p>This section provides information on the disease(s) and phenotype(s) associated with a protein.<p><a href='/help/pathology_and_biotech_section' target='_top'>More...</a></p>Pathology & Biotechi

<p>This subsection of the 'Pathology and Biotech' section describes the in vivo effects caused by ablation of the gene (or one or more transcripts) coding for the protein described in the entry. This includes gene knockout and knockdown, provided experiments have been performed in the context of a whole organism or a specific tissue, and not at the single-cell level.<p><a href='/help/disruption_phenotype' target='_top'>More...</a></p>Disruption phenotypei

Drastically reduces the production of andrastin A.1 Publication

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the 'PTM / Processing' section describes the extent of a polypeptide chain in the mature protein following processing or proteolytic cleavage.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00004464561 – 508Cytochrome P450 monooxygenase adrAAdd BLAST508

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm%5Fprocessing%5Fsection">PTM / Processing</a> section specifies the position and type of each covalently attached glycan group (mono-, di-, or polysaccharide).<p><a href='/help/carbohyd' target='_top'>More...</a></p>Glycosylationi82N-linked (GlcNAc...) asparaginePROSITE-ProRule annotation1
Glycosylationi145N-linked (GlcNAc...) asparaginePROSITE-ProRule annotation1
Glycosylationi206N-linked (GlcNAc...) asparaginePROSITE-ProRule annotation1

Keywords - PTMi

Glycoprotein

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

<p>This subsection of the 'Family and domains' section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Belongs to the cytochrome P450 family.Curated

Keywords - Domaini

Transmembrane, Transmembrane helix

Family and domain databases

Gene3D Structural and Functional Annotation of Protein Families

More...
Gene3Di
1.10.630.10, 1 hit

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR001128, Cyt_P450
IPR017972, Cyt_P450_CS
IPR002403, Cyt_P450_E_grp-IV
IPR036396, Cyt_P450_sf

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF00067, p450, 1 hit

Protein Motif fingerprint database; a protein domain database

More...
PRINTSi
PR00465, EP450IV
PR00385, P450

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF48264, SSF48264, 1 hit

PROSITE; a protein domain and family database

More...
PROSITEi
View protein in PROSITE
PS00086, CYTOCHROME_P450, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence%5Flength">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences%5Fsection">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical%5Fand%5Fisoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

A0A1Y0BRF2-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MAVDKLPLLA KLEPVSLIGL VLLSGLFFLL TATRKSDLPL VNGKRPFEFG
60 70 80 90 100
IAKARQRYLK NAHSLITAGL EKAGAFRIVT ENGTRTILSP KYADDIRSHR
110 120 130 140 150
DLSLSAALVK EHHVNIAGFD AVKVTVTSDI IQDTVRTKLT QNLLNITEPM
160 170 180 190 200
SEEATILLKA QWTDSTEWHD VALRPKTLGI VAQLSSRVFL GDKVCRNPDW
210 220 230 240 250
LRLTVNYTID SLMAAAELRL WPEMLRPIAA KFLPKCKKIR KQLEEARNII
260 270 280 290 300
QPVIDERRLA QQAAIKQGKP QERYHDAIQW LAENTKDRTF EPAAMQLALS
310 320 330 340 350
TAAIHTTTDL LTQTILDLCG REELVQELRE EIISVFKDGS WDKTTMYKLK
360 370 380 390 400
LMDSVIKESQ RVKPMAIAKM ARCAEEDVKL SDGTIIPRGE IILVSCSKMW
410 420 430 440 450
DANVYPDPNT FDPHRFLKLR QQGSDQESFA QLVSPSPEHM GFGFGKHACP
460 470 480 490 500
GRFFAAAELK VALCHIIMKY DFKVAEGCNP QVLKSGMRLA ADPFARIAIR

RRQEEISF
Length:508
Mass (Da):57,182
Last modified:August 30, 2017 - v1
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:iBCD330015128BD86
GO

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
KY349137 Genomic DNA Translation: ART41207.1

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
KY349137 Genomic DNA Translation: ART41207.1

3D structure databases

Database of comparative protein structure models

More...
ModBasei
Search...

SWISS-MODEL Interactive Workspace

More...
SWISS-MODEL-Workspacei
Submit a new modelling project...

Enzyme and pathway databases

UniPathwayiUPA00213

Family and domain databases

Gene3Di1.10.630.10, 1 hit
InterProiView protein in InterPro
IPR001128, Cyt_P450
IPR017972, Cyt_P450_CS
IPR002403, Cyt_P450_E_grp-IV
IPR036396, Cyt_P450_sf
PfamiView protein in Pfam
PF00067, p450, 1 hit
PRINTSiPR00465, EP450IV
PR00385, P450
SUPFAMiSSF48264, SSF48264, 1 hit
PROSITEiView protein in PROSITE
PS00086, CYTOCHROME_P450, 1 hit

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the 'Entry information' section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiADRA_PENRO
<p>This subsection of the 'Entry information' section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called 'Primary (citable) accession number'.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: A0A1Y0BRF2
<p>This subsection of the 'Entry information' section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification ('Last modified'). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical%5Fand%5Fisoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: April 10, 2019
Last sequence update: August 30, 2017
Last modified: December 11, 2019
This is version 8 of the entry and version 1 of the sequence. See complete history.
<p>This subsection of the 'Entry information' section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programFungal Protein Annotation Program

<p>This section contains any relevant information that doesn't fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Documents

  1. PATHWAY comments
    Index of metabolic and biosynthesis pathways
  2. SIMILARITY comments
    Index of protein domains and families
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again