Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 17 (11 Dec 2019)
Sequence version 1 (30 Nov 2016)
Previous versions | rss
Add a publicationFeedback
Protein

Homoserine O-succinyltransferase

Gene

metAS

Organism
Bradyrhizobium japonicum
Status
Reviewed-Annotation score:

Annotation score:3 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the 'correct annotation' for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Experimental evidence at protein leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the 'protein existence' evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Transfers a succinyl group from succinyl-CoA to L-homoserine, forming succinyl-L-homoserine.UniRule annotation1 Publication

<p>This subsection of the <a href="http://www.uniprot.org/help/function%5Fsection">Function</a> section describes the catalytic activity of an enzyme, i.e. a chemical reaction that the enzyme catalyzes.<p><a href='/help/catalytic_activity' target='_top'>More...</a></p>Catalytic activityi

<p>This subsection of the <a href="http://www.uniprot.org/help/function%5Fsection">'Function'</a> section describes the metabolic pathway(s) associated with a protein.<p><a href='/help/pathway' target='_top'>More...</a></p>Pathwayi: L-methionine biosynthesis via de novo pathway

This protein is involved in step 1 of the subpathway that synthesizes O-succinyl-L-homoserine from L-homoserine.UniRule annotation
Proteins known to be involved in this subpathway in this organism are:
  1. Homoserine O-succinyltransferase (metAS), Homoserine O-succinyltransferase (metAS), Homoserine O-succinyltransferase (metAS), Homoserine O-succinyltransferase (metAS), Homoserine O-succinyltransferase (metAS)
This subpathway is part of the pathway L-methionine biosynthesis via de novo pathway, which is itself part of Amino-acid biosynthesis.
View all proteins of this organism that are known to be involved in the subpathway that synthesizes O-succinyl-L-homoserine from L-homoserine, the pathway L-methionine biosynthesis via de novo pathway and in Amino-acid biosynthesis.

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection describes interesting single amino acid sites on the sequence that are not defined in any other subsection. This subsection can be displayed in different sections ('Function', 'PTM / Processing', 'Pathology and Biotech') according to its content.<p><a href='/help/site' target='_top'>More...</a></p>Sitei109Important for acyl-CoA specificityUniRule annotation1
<p>This subsection of the <a href="http://www.uniprot.org/help/function%5Fsection">Function</a> section is used for enzymes and indicates the residues directly involved in catalysis.<p><a href='/help/act_site' target='_top'>More...</a></p>Active sitei142Acyl-thioester intermediateUniRule annotation1
Sitei143Important for acyl-CoA specificityUniRule annotation1
<p>This subsection of the <a href="http://www.uniprot.org/help/function%5Fsection">Function</a> section describes the interaction between a single amino acid and another chemical entity. Priority is given to the annotation of physiological ligands.<p><a href='/help/binding' target='_top'>More...</a></p>Binding sitei163SubstrateUniRule annotation1
Binding sitei191SubstrateUniRule annotation1
Sitei191Important for substrate specificityUniRule annotation1
Active sitei234Proton acceptorUniRule annotation1
Active sitei236UniRule annotation1
Binding sitei248SubstrateUniRule annotation1

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionAcyltransferase, Transferase
Biological processAmino-acid biosynthesis, Methionine biosynthesis

Enzyme and pathway databases

UniPathway: a resource for the exploration and annotation of metabolic pathways

More...
UniPathwayi
UPA00051;UER00075

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Homoserine O-succinyltransferaseUniRule annotation (EC:2.3.1.46UniRule annotation1 Publication)
Short name:
HST1 PublicationUniRule annotation
Alternative name(s):
Homoserine transsuccinylaseUniRule annotation
Short name:
HTSUniRule annotation
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: 'Name', 'Synonyms', 'Ordered locus names' and 'ORF names'.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:metAS1 PublicationUniRule annotation
Synonyms:metAImported
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiBradyrhizobium japonicum
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the 'taxonomic identifier' or 'taxid'.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri375 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names%5Fand%5Ftaxonomy%5Fsection">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiBacteriaProteobacteriaAlphaproteobacteriaRhizobialesBradyrhizobiaceaeBradyrhizobium

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi

GO - Cellular componenti

Keywords - Cellular componenti

Cytoplasm

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the 'PTM / Processing' section describes the extent of a polypeptide chain in the mature protein following processing or proteolytic cleavage.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00004403491 – 325Homoserine O-succinyltransferaseAdd BLAST325

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

<p>This subsection of the 'Family and domains' section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Belongs to the MetA family.UniRule annotation

Family and domain databases

Gene3D Structural and Functional Annotation of Protein Families

More...
Gene3Di
3.40.50.880, 1 hit

HAMAP database of protein families

More...
HAMAPi
MF_00295, MetA_acyltransf, 1 hit

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR029062, Class_I_gatase-like
IPR033752, MetA_family

The PANTHER Classification System

More...
PANTHERi
PTHR20919, PTHR20919, 1 hit

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF04204, HTS, 1 hit

PIRSF; a whole-protein classification database

More...
PIRSFi
PIRSF000450, H_ser_succinyltr, 1 hit

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF52317, SSF52317, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence%5Flength">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences%5Fsection">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical%5Fand%5Fisoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

A0A1D3PCJ5-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MTLLFDGDRR IKSPALAPAG GDRRARDPIE LTIGLVNNMP DSALKATDVQ
60 70 80 90 100
IARLLQQAAP WHVRIRLHCF SLPSIARSPM ASSHVAQTYT DIDRLDGLDI
110 120 130 140 150
DGLIVTGAEP VAARLRDESY WPDLAAIVDW ARTNTKTTIW SCLAAHAAVL
160 170 180 190 200
HLDDIERQRL ASKCSGVFDC VKVRDDWLTH GIDAPLQVPH SRLNAVNEPL
210 220 230 240 250
LAERGYDILT RSAEVGVDIF ARTMPSRFVF FQGHPEYDAL SLQREYMRDI
260 270 280 290 300
ARYLAGQRED YPRPPRSYFS AESEAVLNTF EIRARARRDP TLAAELPGLT
310 320
LRPDLAAGHA AKLLFRNWIG YLADG
Length:325
Mass (Da):36,275
Last modified:November 30, 2016 - v1
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:iCB8EC145A33A9FAF
GO

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
LT613637 Genomic DNA Translation: SCN13861.1

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
LT613637 Genomic DNA Translation: SCN13861.1

3D structure databases

Database of comparative protein structure models

More...
ModBasei
Search...

SWISS-MODEL Interactive Workspace

More...
SWISS-MODEL-Workspacei
Submit a new modelling project...

Enzyme and pathway databases

UniPathwayiUPA00051;UER00075

Family and domain databases

Gene3Di3.40.50.880, 1 hit
HAMAPiMF_00295, MetA_acyltransf, 1 hit
InterProiView protein in InterPro
IPR029062, Class_I_gatase-like
IPR033752, MetA_family
PANTHERiPTHR20919, PTHR20919, 1 hit
PfamiView protein in Pfam
PF04204, HTS, 1 hit
PIRSFiPIRSF000450, H_ser_succinyltr, 1 hit
SUPFAMiSSF52317, SSF52317, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the 'Entry information' section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiMETAS_BRAJP
<p>This subsection of the 'Entry information' section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called 'Primary (citable) accession number'.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: A0A1D3PCJ5
<p>This subsection of the 'Entry information' section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification ('Last modified'). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical%5Fand%5Fisoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: June 7, 2017
Last sequence update: November 30, 2016
Last modified: December 11, 2019
This is version 17 of the entry and version 1 of the sequence. See complete history.
<p>This subsection of the 'Entry information' section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programProkaryotic Protein Annotation Program

<p>This section contains any relevant information that doesn't fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Documents

  1. PATHWAY comments
    Index of metabolic and biosynthesis pathways
  2. SIMILARITY comments
    Index of protein domains and families
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again