Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Entry version 11 (08 May 2019)
Sequence version 1 (11 May 2016)
Previous versions | rss
Help videoAdd a publicationFeedback
Protein

FAD-linked oxidoreductase ptmO

Gene

ptmO

Organism
Penicillium simplicissimum
Status
Reviewed-Annotation score:

Annotation score:2 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Protein inferred from homologyi <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

FAD-linked oxidoreductase; part of the gene cluster that mediates the biosynthesis of the indole diterpenes penitrems (PubMed:25831977). The geranylgeranyl diphosphate (GGPP) synthase ptmG catalyzes the first step in penitrem biosynthesis via conversion of farnesyl pyrophosphate and isopentyl pyrophosphate into geranylgeranyl pyrophosphate (GGPP) (PubMed:25831977). Condensation of indole-3-glycerol phosphate with GGPP by the prenyl transferase ptmC then forms 3-geranylgeranylindole (3-GGI) (PubMed:25831977). Epoxidation by the FAD-dependent monooxygenase ptmM leads to a epoxidized-GGI that is substrate of the terpene cyclase ptmB for cyclization to yield paspaline (PubMed:25831977). Paspaline is subsequently converted to 13-desoxypaxilline by the cytochrome P450 monooxygenase ptmP, the latter being then converted to paxilline by the cytochrome P450 monooxygenase ptmQ (PubMed:25831977). Paxilline is converted to beta-paxitriol via C-10 ketoreduction by the short-chain dehydrogenase ptmH which can be monoprenylated at the C-20 by the indole diterpene prenyltransferase ptmD (PubMed:25831977). A two-step elimination (acetylation and elimination) process performed by the O-acetyltransferase ptmV and ptmI leads to the production of the prenylated form of penijanthine (PubMed:25831977). The FAD-linked oxidoreductase ptmO then converts the prenylated form of penijanthine into PC-M5 which is in turn transformed into PC-M4 by the aromatic dimethylallyltransferase ptmE (PubMed:25831977). Five sequential oxidative transformations performed by the cytochrome P450 monooxygenases ptmK, ptmU, ptmL, ptmN and ptmJ yield the various penitrem compounds. PtmK, ptmU and ptmM are involved in the formation of the key bicyclic ring of penitrem C via the formation of the intermediates secopenitrem D and penitrem D. PtmL catalyzes the epoxidation of penitrem D and C to yield penitrem B and F, respectively. PtmJ catalyzes the last benzylic hydroxylation to convert penitrem B to prenitrem E and penitrem F to penitrem A (PubMed:25831977).1 Publication

<p>This subsection of the ‘Function’ section provides information relevant to cofactors. A cofactor is any non-protein substance required for a protein to be catalytically active. Some cofactors are inorganic, such as the metal atoms zinc, iron, and copper in various oxidation states. Others, such as most vitamins, are organic.<p><a href='/help/cofactor' target='_top'>More...</a></p>Cofactori

FADCurated

<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">'Function'</a> section describes the metabolic pathway(s) associated with a protein.<p><a href='/help/pathway' target='_top'>More...</a></p>Pathwayi: Secondary metabolite biosynthesis

This protein is involved in Secondary metabolite biosynthesis.1 Publication
View all proteins of this organism that are known to be involved in Secondary metabolite biosynthesis.

<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionOxidoreductase
LigandFAD, Flavoprotein

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
FAD-linked oxidoreductase ptmO1 Publication (EC:1.1.1.-1 Publication)
Alternative name(s):
Penitrem biosynthesis cluster 2 protein O1 Publication
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:ptmO1 Publication
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiPenicillium simplicissimum
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri69488 [NCBI]
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiEukaryotaFungiDikaryaAscomycotaPezizomycotinaEurotiomycetesEurotiomycetidaeEurotialesAspergillaceaePenicillium

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_00004465701 – 450FAD-linked oxidoreductase ptmOAdd BLAST450

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi

Domains and Repeats

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="http://www.uniprot.org/help/family_and_domains_section">Family and Domains</a> section describes the position and type of a domain, which is defined as a specific combination of secondary structures organized into a characteristic three-dimensional structure or fold.<p><a href='/help/domain' target='_top'>More...</a></p>Domaini32 – 203FAD-binding PCMH-typePROSITE-ProRule annotationAdd BLAST172

<p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Family and domain databases

Gene3D Structural and Functional Annotation of Protein Families

More...
Gene3Di
3.30.43.10, 1 hit
3.30.465.10, 1 hit

Integrated resource of protein families, domains and functional sites

More...
InterProi
View protein in InterPro
IPR016166 FAD-bd_PCMH
IPR036318 FAD-bd_PCMH-like_sf
IPR016167 FAD-bd_PCMH_sub1
IPR016169 FAD-bd_PCMH_sub2
IPR006094 Oxid_FAD_bind_N

Pfam protein domain database

More...
Pfami
View protein in Pfam
PF01565 FAD_binding_4, 1 hit

Superfamily database of structural and functional annotation

More...
SUPFAMi
SSF56176 SSF56176, 1 hit

PROSITE; a protein domain and family database

More...
PROSITEi
View protein in PROSITE
PS51387 FAD_PCMH, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>. The information is filed in different subsections. The current subsections and their content are listed below:<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

A0A140JWT7-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
MKHNLPADLV TLWRDSPGYE SARSRTFNQR IPPELPYAIV RPKNMEQIQH
60 70 80 90 100
AVQLAVDLDK QIRIRSGGHS LAGWTLCADS ILIDLVDFRH LEYDATTAIA
110 120 130 140 150
SASPSATSAQ LNDLLVPHGR FVPVGHCGDV GLGGFFLQGG MGLNCRSYGW
160 170 180 190 200
ACEYLVGVDL ITADGEYKHC SESENADLFW AARGAGPEFP AIVTRFFIRT
210 220 230 240 250
RPAAAKYEKS TFIWPVACSD AVVSWILKIL PELHADIEPL VVSTIVPGLN
260 270 280 290 300
VAAILVQFLV FLSTNETGAE KLGPSLTAMP DGTLMEFKGV PTSIQQEYVS
310 320 330 340 350
QEGTMPRDSR YICDSVWFKD GIDFVTVTRR MFREFPRDRS MVYWEPKYPT
360 370 380 390 400
SRRQLPDMAF SLQADQYLAL FAIFEDSQQD EEQGIRIQEF IQEIEPYVLG
410 420 430 440 450
TFAADGMPAV RKTQYWSAEV IERLYSVCQK WDPAHRLGCT LLDPTRKVKS
Length:450
Mass (Da):50,474
Last modified:May 11, 2016 - v1
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:iA113D6830ACBDA71
GO

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database

More...
EMBLi

GenBank nucleotide sequence database

More...
GenBanki

DNA Data Bank of Japan; a nucleotide sequence database

More...
DDBJi
Links Updated
LC027937 Genomic DNA Translation: BAU61564.1

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
LC027937 Genomic DNA Translation: BAU61564.1

3D structure databases

Database of comparative protein structure models

More...
ModBasei
Search...

SWISS-MODEL Interactive Workspace

More...
SWISS-MODEL-Workspacei
Submit a new modelling project...

Family and domain databases

Gene3Di3.30.43.10, 1 hit
3.30.465.10, 1 hit
InterProiView protein in InterPro
IPR016166 FAD-bd_PCMH
IPR036318 FAD-bd_PCMH-like_sf
IPR016167 FAD-bd_PCMH_sub1
IPR016169 FAD-bd_PCMH_sub2
IPR006094 Oxid_FAD_bind_N
PfamiView protein in Pfam
PF01565 FAD_binding_4, 1 hit
SUPFAMiSSF56176 SSF56176, 1 hit
PROSITEiView protein in PROSITE
PS51387 FAD_PCMH, 1 hit

ProtoNet; Automatic hierarchical classification of proteins

More...
ProtoNeti
Search...

MobiDB: a database of protein disorder and mobility annotations

More...
MobiDBi
Search...

<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiPTMO_PENSI
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: A0A140JWT7
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/Swiss-Prot: April 10, 2019
Last sequence update: May 11, 2016
Last modified: May 8, 2019
This is version 11 of the entry and version 1 of the sequence. See complete history.
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programFungal Protein Annotation Program

<p>This section contains any relevant information that doesn’t fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi

Documents

  1. SIMILARITY comments
    Index of protein domains and families
  2. PATHWAY comments
    Index of metabolic and biosynthesis pathways
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again