Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.




Influenza A virus (A/mallard/MN/AI08-3267/2008(H11N9))
Unreviewed-Annotation score:

Annotation score:4 out of 5

<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome. This score <strong>cannot</strong> be used as a measure of the accuracy of the annotation as we cannot define the ‘correct annotation’ for any given protein.<p><a href='/help/annotation_score' target='_top'>More...</a></p>
-Protein inferred from homologyi <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>

<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni

Catalyzes the removal of terminal sialic acid residues from viral and cellular glycoconjugates. Cleaves off the terminal sialic acids on the glycosylated HA during virus budding to facilitate virus release. Additionally helps virus spread through the circulation by further removing sialic acids from the cell surface. These cleavages prevent self-aggregation and ensure the efficient spread of the progeny virus from cell to cell. Otherwise, infection would be limited to one round of replication. Described as a receptor-destroying enzyme because it cleaves a terminal sialic acid from the cellular receptors. May facilitate viral invasion of the upper airways by cleaving the sialic acid moities on the mucin of the airway epithelial cells. Likely to plays a role in the budding process through its association with lipid rafts during intracellular transport. May additionally display a raft-association independent effect on budding. Plays a role in the determination of host range restriction on replication and virulence. Sialidase activity in late endosome/lysosome traffic seems to enhance virus replication.UniRule annotationSAAS annotation


Lacks conserved residue(s) required for the propagation of feature annotation.UniRule annotation

<p>This subsection of the <a href="">Function</a> section describes the catalytic activity of an enzyme, i.e. a chemical reaction that the enzyme catalyzes.<p><a href='/help/catalytic_activity' target='_top'>More...</a></p>Catalytic activityi

  • Hydrolysis of alpha-(2->3)-, alpha-(2->6)-, alpha-(2->8)- glycosidic linkages of terminal sialic acid residues in oligosaccharides, glycoproteins, glycolipids, colominic acid and synthetic substrates.UniRule annotationSAAS annotation EC:

<p>This subsection of the ‘Function’ section provides information relevant to cofactors. A cofactor is any non-protein substance required for a protein to be catalytically active. Some cofactors are inorganic, such as the metal atoms zinc, iron, and copper in various oxidation states. Others, such as most vitamins, are organic.<p><a href='/help/cofactor' target='_top'>More...</a></p>Cofactori

Ca2+UniRule annotationSAAS annotation

<p>This subsection of the ‘Function’ section describes regulatory mechanisms for enzymes, transporters or microbial transcription factors, and reports the components which regulate (by activation or inhibition) the reaction.<p><a href='/help/activity_regulation' target='_top'>More...</a></p>Activity regulationi

Inhibited by the neuraminidase inhibitors zanamivir (Relenza) and oseltamivir (Tamiflu). These drugs interfere with the release of progeny virus from infected cells and are effective against all influenza strains. Resistance to neuraminidase inhibitors is quite rare.UniRule annotationSAAS annotation


Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Function’ section describes the interaction between a single amino acid and another chemical entity. Priority is given to the annotation of physiological ligands.<p><a href='/help/binding' target='_top'>More...</a></p>Binding sitei119SubstrateUniRule annotation1
<p>This subsection of the ‘Function’ section is used for enzymes and indicates the residues directly involved in catalysis.<p><a href='/help/act_site' target='_top'>More...</a></p>Active sitei152Proton donor/acceptorUniRule annotation1
Binding sitei153SubstrateUniRule annotation1
Binding sitei295SubstrateUniRule annotation1
<p>This subsection of the ‘Function’ section indicates at which position the protein binds a given metal ion. The nature of the metal is indicated in the ‘Description’ field.<p><a href='/help/metal' target='_top'>More...</a></p>Metal bindingi296Calcium; via carbonyl oxygenUniRule annotation1
Metal bindingi300Calcium; via carbonyl oxygenUniRule annotation1
Metal bindingi327CalciumUniRule annotation1
Metal bindingi349Calcium; via carbonyl oxygenUniRule annotation1
Binding sitei373SubstrateUniRule annotation1
Active sitei407NucleophileUniRule annotation1

<p>The <a href="">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni

GO - Biological processi

<p>UniProtKB Keywords constitute a <a href="">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi

Molecular functionGlycosidaseUniRule annotationSAAS annotation, Hydrolase
LigandCalciumUniRule annotationSAAS annotation, Metal-bindingUniRule annotationSAAS annotation

<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi

<p>This subsection of the <a href="">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
NeuraminidaseUniRule annotationSAAS annotation (EC: annotationSAAS annotation)
<p>This subsection of the <a href="">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
Name:NAUniRule annotationImported
<p>This subsection of the <a href="">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>OrganismiInfluenza A virus (A/mallard/MN/AI08-3267/2008(H11N9))Imported
<p>This subsection of the <a href="">Names and taxonomy</a> section shows the unique identifier assigned by the NCBI to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri1369860 [NCBI]
<p>This subsection of the <a href="">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineageiVirusesssRNA virusesssRNA negative-strand virusesOrthomyxoviridaeAlphainfluenzavirus

<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi


Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the <a href="">'Subcellular location'</a> section describes the extent of a membrane-spanning region of the protein. It denotes the presence of both alpha-helical transmembrane regions and the membrane spanning regions of beta-barrel transmembrane proteins.<p><a href='/help/transmem' target='_top'>More...</a></p>Transmembranei7 – 31HelicalUniRule annotationAdd BLAST25

GO - Cellular componenti

Keywords - Cellular componenti

Host cell membraneUniRule annotationSAAS annotation, Host membrane, Membrane, VirionUniRule annotationSAAS annotation

<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the PTM / Processing":/help/ptm_processing_section section describes the positions of cysteine residues participating in disulfide bonds.<p><a href='/help/disulfid' target='_top'>More...</a></p>Disulfide bondi125 ↔ 130UniRule annotation
Disulfide bondi186 ↔ 233UniRule annotation
Disulfide bondi235 ↔ 240UniRule annotation
Disulfide bondi281 ↔ 294UniRule annotation
Disulfide bondi283 ↔ 292UniRule annotation

<p>This subsection of the <a href="">PTM/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi

N-glycosylated.UniRule annotation

Keywords - PTMi

Disulfide bondUniRule annotationSAAS annotation, GlycoproteinUniRule annotation

<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni

<p>This subsection of the <a href="">'Interaction'</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="">'Function'</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei

Homotetramer.UniRule annotationSAAS annotation

<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi


Feature keyPosition(s)DescriptionActionsGraphical viewLength
<p>This subsection of the ‘Family and Domains’ section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni11 – 33Involved in apical transport and lipid raft associationUniRule annotationAdd BLAST23
Regioni92 – 471Head of neuraminidaseUniRule annotationAdd BLAST380
Regioni279 – 280Substrate bindingUniRule annotation2

<p>This subsection of the ‘Family and domains’ section provides general information on the biological role of a domain. The term ‘domain’ is intended here in its wide acceptation, it may be a structural domain, a transmembrane region or a functional domain. Several domains are described in this subsection.<p><a href='/help/domain_cc' target='_top'>More...</a></p>Domaini

Intact N-terminus is essential for virion morphogenesis. Possess two apical sorting signals, one in the ectodomain, which is likely to be a glycan, and the other in the transmembrane domain. The transmembrane domain also plays a role in lipid raft association.UniRule annotation

<p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi

Belongs to the glycosyl hydrolase 34 family.UniRule annotationSAAS annotation

Keywords - Domaini

Signal-anchorUniRule annotation, Transmembrane, Transmembrane helixUniRule annotationSAAS annotation

Family and domain databases

Conserved Domains Database

cd15483 Influenza_NA, 1 hit

HAMAP database of protein families

MF_04071 INFV_NRAM, 1 hit

Integrated resource of protein families, domains and functional sites

View protein in InterPro
IPR001860 Glyco_hydro_34
IPR033654 Sialidase_Influenza_A/B
IPR036278 Sialidase_sf

Pfam protein domain database

View protein in Pfam
PF00064 Neur, 1 hit

Superfamily database of structural and functional annotation

SSF50939 SSF50939, 1 hit

<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="">length</a> and <a href="">molecular weight</a>.<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei

<p>This subsection of the <a href="">Sequence</a> section indicates if the <a href="">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.

A0A0A6ZH50-1 [UniParc]FASTAAdd to basket
« Hide
        10         20         30         40         50
60 70 80 90 100
110 120 130 140 150
160 170 180 190 200
210 220 230 240 250
260 270 280 290 300
310 320 330 340 350
360 370 380 390 400
410 420 430 440 450
460 470
Mass (Da):52,394
Last modified:March 4, 2015 - v1
<p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.</p> <p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.</p> <p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).</p> <p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1. The algorithm is described in the ISO 3309 standard. </p> <p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br /> <strong>Cyclic redundancy and other checksums</strong><br /> <a href="">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p> Checksum:i6F14A024384A8F94

Sequence databases

Select the link destinations:

EMBL nucleotide sequence database


GenBank nucleotide sequence database


DNA Data Bank of Japan; a nucleotide sequence database

Links Updated
KF445411 Viral cRNA Translation: AGT18710.1

<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi

<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi

Sequence databases

Select the link destinations:
Links Updated
KF445411 Viral cRNA Translation: AGT18710.1

3D structure databases

Database of comparative protein structure models


MobiDB: a database of protein disorder and mobility annotations


Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Family and domain databases

CDDicd15483 Influenza_NA, 1 hit
HAMAPiMF_04071 INFV_NRAM, 1 hit
InterProiView protein in InterPro
IPR001860 Glyco_hydro_34
IPR033654 Sialidase_Influenza_A/B
IPR036278 Sialidase_sf
PfamiView protein in Pfam
PF00064 Neur, 1 hit
SUPFAMiSSF50939 SSF50939, 1 hit

ProtoNet; Automatic hierarchical classification of proteins


<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi

<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry nameiA0A0A6ZH50_9INFA
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>AccessioniPrimary (citable) accession number: A0A0A6ZH50
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyiIntegrated into UniProtKB/TrEMBL: March 4, 2015
Last sequence update: March 4, 2015
Last modified: January 16, 2019
This is version 30 of the entry and version 1 of the sequence. See complete history.
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusiUnreviewed (UniProtKB/TrEMBL)
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again