Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.


StatusReference proteome
Proteinsi <p>Number of protein entries associated with this proteome: UniProtKB entries for regular proteomes or UniParc entries for redundant proteomes (<a href="/help/proteome%5Fredundancy">more...</a>)</p> 3,120
Gene counti <p>This is the total number of unique genes found in the proteome set, algorithmically computed. For each gene, a single representative protein sequence is chosen from the proteome. Where possible, reviewed (Swiss-Prot) protein sequences are chosen as the representatives.</p> - Download one protein sequence per gene (FASTA)
Proteome IDi <p>The proteome identifier (UPID) is the unique identifier assigned to the set of proteins that constitute the <a href="">proteome</a>. It consists of the characters 'UP' followed by 9 digits, is stable across releases and can therefore be used to cite a UniProt proteome.<p><a href='/help/proteome_id' target='_top'>More...</a></p>UP000001362
Taxonomy243159 - Acidithiobacillus ferrooxidans (strain ATCC 23270 / DSM 14882 / CIP 104768 / NCIMB 8455)
StrainATCC 23270 / DSM 14882 / CIP 104768 / NCIMB 8455
Last modifiedJanuary 15, 2020
Genome assembly and annotationi <p>Identifier for the genome assembly (<a href="">more...</a>)</p> GCA_000021485.1 from ENA/EMBL full
Pan proteomei <p>A pan proteome is the full set of proteins thought to be expressed by a group of highly related organisms (e.g. multiple strains of the same bacterial species).<p><a href='/help/pan_proteomes' target='_top'>More...</a></p> This proteome is part of the Acidithiobacillus ferrooxidans (strain ATCC 23270 / DSM 14882 / CIP 104768 / NCIMB 8455) (Ferrobacillus ferrooxidans (strain ATCC 23270)) pan proteome (fasta)
CompletenessClose to Standard

Acidithiobacillus ferrooxidans (strain ATCC 23270 / DSM 14882 / NCIB 8455) is a facultative anaerobic, chemolithoautotrophic, Gram-negative proteobacterium that thrives optimally at 30 degrees Celsius and pH 2, but can grow at pH 1 or lower. It is abundant in areas of high sulfur content and in natural environments associated with pyritic ore bodies, coal deposits, and their acidified drainages.

A. ferrooxidans is one of the few microorganisms known to gain energy by the oxidation of ferrous iron in acidic environments, using the low pH of its natural environment to generate reverse electron flow from Fe(II) to NADH. It can also obtain energy by the oxidation of reduced sulfur compounds, hydrogen, and formate. A. ferrooxidans, which has several D-ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), fixes CO2 via the Calvin cycle using energy and reducing power derived from the oxidation of iron or sulfur. It can meet its nitrogen needs by either nitrogen fixation or ammonia assimilation.

The microorganism makes an important contribution to the biogeochemical cycling of metals in the environment and has the potential to assist in the bioremediation of contaminated sites and for the recovery of important metals such as gold, uranium, and copper from low grade ore by its ability to oxidize and reduce metals. It is for this reason that A. ferrooxidans is used in a bacterial consortium, along with the organism Leptospirillum ferrooxidans by mining companies for extraction of metals. For example, it is used to recover copper via a process known as bioleaching or biomining. Bioleaching of copper ores is a two-step process: first, the biological oxidation of Fe(II) to produce Fe(III); second, the chemical oxidation of Cu(I) to the more soluble Cu(II) by Fe(III) which is reduced to Fe(II) in the process. A. ferrooxidans plays a key role by reoxidizing the Fe(II) to Fe(III), thus completing the cycle and allowing bioleaching to continue. Another unusual propertie of A. ferrooxidans is its ability to aerobically oxidize solid substrates such as pyrite (FeS2). Since the substrate cannot enter the cell, initial electron removal must take place either within the outer cell membrane or completely outside the cell via extracellular polymeric substances.

Componentsi <p>Genomic components encoding the proteome</p>

Component nameGenome Accession(s)
Component representationProteins


  1. "Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications."
    Valdes J., Pedroso I., Quatrini R., Dodson R.J., Tettelin H., Blake R. II, Eisen J.A., Holmes D.S.
    BMC Genomics 9:597-597(2008) [PubMed] [Europe PMC] [Abstract]
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again