Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.


StatusReference proteome
Proteome IDiUP000000756
Taxonomy380703 - Aeromonas hydrophila subsp. hydrophila (strain ATCC 7966 / DSM 30187 / JCM 1027 / KCTC 2358 / NCIMB 9240)
StrainATCC 7966 / DSM 30187 / JCM 1027 / KCTC 2358 / NCIMB 9240
Last modifiedMay 24, 2018
Genome assembly and annotationi GCA_000014805.1 from ENA/EMBL
Pan proteomei This proteome is part of the Aeromonas hydrophila subsp. hydrophila (strain ATCC 7966 / DSM 30187 / JCM 1027 / KCTC 2358 / NCIMB 9240) pan proteome (fasta)

Aeromonas spp. are ubiquitous bacteria found in diverse aquatic environments worldwide, such as bottled water, chlorinated water, well water and heavily polluted waters. Aeromonas hydrophila survives easily in waters polluted by feces and seems resistant to various disinfectants, insecticides and chemicals. High numbers of Aeromonas spp. were recorded in floodwater samples in New Orleans following hurricane Katrina and they were the most common cause of skin and soft tissue infections among the survivors of the 2004 tsunami in Thailand. Aeromonas spp. cause infections in invertebrate and vertebrate such as frogs, birds and domestic animals. Infection in various fish species can result in hemorrhagic disease and furunculosis. Although Aeromonas was originally considered an opportunistic pathogen in immunocompromised humans, increasing cases of intestinal and extraintestinal disease suggest that it is an emerging human pathogen irrespective of the host's immune system. This organism has been included in the Contaminant Candidate List by the Environmental Protection Agency.

Aeromonas hydrophila subsp. hydrophila (strain ATCC 7966 / NCIB 9240) was originally isolated from "a tin of milk with a fishy odor". Its genome is comprised of a single circular 4.74 Mb-chromosome. No transposase, resolvase or insertion sequence element was found in the genome. A type II secretion system and genes homologs to the vas genes proposed to encode a prototypic type VI secretion system were identified but a type III secretion system is surprisingly absent. The genes for the polar flagellum are found in four main clusters. It seems well-equipped to counter an attack of antibacterial factors as beta-lactamases, chloramphenicol acetyltransferases and other proteins that could confer resistance to bicyclomicin, fosmidomycin and aminoglycosides are present. A peptide intake transport system may play a role in resistance to antimicrobial peptides and drug efflux transporters may confer further resistance to other classes of antibiotics and toxins. A four-gene arsenical resistance operon that may pump arsenite or antimonite out of the cell has been found. Numerous amino acid and peptide transporters and relatively few sugar uptake systems are present. Both Sec and Tat secretion systems have been identified. Complete multistep pathways for synthesizing all amino acids are predicted. A selenocysteine incorporation system, selABC, is present although only a single selenoprotein, the alpha subunit of format dehydrogenase, is predicted. A. hydrophila possesses a polyhydroxyalkanoic acid storage granule system for nitrogen limitation-induced storage and a glycogen system for carbohydrate storage and mobilization. Many chitin-degrading enzymes have been predicted in addition to the characterized extracellular chitinase Chi192 and chitobiase.


DownloadView all proteins
Component nameGenome Accession(s)

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health